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Abstract We are interested in maximizing smooth functions where observations
are noisy and expensive to compute, as might arise in computer simulations or lab-
oratory experimentations. We derive a knowledge gradient policy, which chooses
measurements which maximize the expected value of information, while using a
locally parametric belief model that uses linear approximations with radial basis
functions. The method uses a compact representation of the function which avoids
storing the entire history, as is typically required by nonparametric methods. Our
technique uses the expected value of a measurement in terms of its ability to im-
prove our estimate of the optimum, capturing correlations in our beliefs about
neighboring regions of the function, without posing any assumptions on the global
shape of the underlying function a priori. Experimental work suggests that the
method adapts to a range of arbitrary, continuous functions, and appears to reli-
ably find the optimal solution. Moreover, the policy is shown to be asymptotically
optimal.

Keywords Ranking and selection · Optimal learning · Local parametric model ·
Stochastic search

1 Introduction

We consider the problem of maximizing an unknown function over a finite set
of possible alternatives, where observations of the function are noisy and may
be expensive. This problem arises under settings such as simulation-optimization,

Bolong Cheng
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
E-mail: bcheng@princeton.edu

Arta Jamshidi
Department of Operations Research and Financial Engineering, Princeton University, Prince-
ton, NJ 08544 E-mail: arta@princeton.edu

Warren B. Powell
Department of Operations Research and Financial Engineering, Princeton University, Prince-
ton, NJ 08544 E-mail: powell@princeton.edu



2 Bolong Cheng et al.

stochastic search, and ranking and selection. A popular strategy involves response
surface methods which fit polynomial approximations to guide the search of the
next observation (see [2], [8]). Our work was motivated by difficulties we encoun-
tered fitting parametric surfaces, even to relatively simple functions. Low order
models can produce poor approximations, while higher order models quickly suffer
from over fitting. This experience led us to consider a variety of statistical strate-
gies, but ultimately produced a new local parametric procedure called Dirichlet
Clouds with Radial Basis Functions (DC-RBF) [24]. This paper addresses the
problem of doing stochastic search using the knowledge gradient ([12] and [34]),
where the underlying belief model is represented using DC-RBF.

The optimization of noisy functions, or stochastic search, has been studied ex-
tensively since the seminal paper by [35] which introduces the idea of stochastic
gradient algorithms for differentiable functions. [38] and [14] provide a thorough
coverage of the literature for stochastic search methods. A separate line of research
has evolved under the umbrella of active (or optimal) learning where observations
are made specifically based on some measure of value of information (see [9] and
[34] for reviews). For this problem class, we assume we do not have access to deriva-
tives, and we assume that function evaluations are both noisy and expensive, as
might arise when doing laboratory experiments. [19] was the first to introduce
the idea of choosing measurements based on the marginal value of information to
solve the ranking and selection problem. This policy is later extended under the
name knowledge gradient using a Bayesian approach, where the value of infor-
mation from an experiment is computed using the predictive distribution of the
performance for a given set of parameters [12]. The knowledge gradient policy is
shown to be the only stationary policy that is both myopically and asymptotically
optimal. Most of the previous work in ranking and selection problems assumes
the alternatives to be independent (alternatives close to each other do not exhibit
correlation), see, e.g., [33].

There is a small literature that deals with correlated alternatives. [13] extends
the knowledge gradient policy to take advantage of the covariance structure of
alternatives using a lookup table belief model. [32] proposes an extension of the
knowledge gradient where the beliefs can be represented by a linear paramet-
ric model. An adaptation of the knowledge gradient with correlated beliefs using
kernel regression and aggregation of kernels for estimating the belief function is
presented in [3]. The kernel version of knowledge gradient is built on the work pre-
sented in [29], where the estimates are the hierarchical aggregates of the values. A
separate branch of statistical model based optimization research stems from the
work of [28], where the true function is modeled as a realization of a Gaussian pro-
cess. Earlier work on the optimization of one-dimensional functions use the Wiener
process as prior, such as the algorithm proposed in [40]. [5]) due to its computa-
tional efficiency. A more general class of the Gaussian process is considered in the
modern variations of this method. The sequential kriging optimization method
from [22] fits a stationary Gaussian process onto the observed variables where
the distance between alternatives dictates the correlation structure. Measurement
points are selected by maximizing an expected improvement (EI) function. This
is an extension of the well-known efficient global optimization (EGO) algorithm
introduced in [25], which only considers noise-free observations. [39] introduces
entropy minimization-based methods for determining the sampling decisions.
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The online learning setting with discrete alternatives is studied in [18], using a
method known as Gittins indices. However, Gittins indices are difficult to compute
exactly, and only apply to a very specific problem (infinite horizon, independent
beliefs). [6] proposes an approximation of the index for the infinite horizon dis-
counted “Bayesian bandit” problem. An improved approximation is proposed in
[7]. The knowledge gradient is extended to online (bandit) settings in [36]. The
case of continuous decisions has been studied in [1], [17] and [37].

There are three major classes of function approximation methods: look-up
tables, parametric models (linear or non-linear), and nonparametric models. Para-
metric regression techniques (such as linear regression, see [30]) assume that the
underlying structure of the data is known a priori and is in the span of the re-
gressor function. Due to the simplicity of this approach it is commonly used for
regression. Neural networks have attracted considerable attention [21], but they
are heavily dependent on the structure of the network and as a result require
considerable tuning, just as parametric models are dependent on their assumed
functional structure.

Nonparametric models ([10], [31]) offer the attraction of considerable generality
by using the raw data to build local approximations of the function, producing a
flexible but data-intensive representation. Nonparametric models are less sensitive
to structural errors arising from a parametric model. Most nonparametric models
require keeping track of all observed data points, which make function evaluations
increasingly expensive as the algorithm progresses, a serious problem in stochastic
search. Bayesian techniques for function approximation or regression are compu-
tationally intense and require storage of all the data points [15]. Local polynomial
models [11] build linear models around each observation and keep track of all the
data points.

Another class of approximation algorithms use local approximations around
regions of the function, rather than each prior observation. [20] uses the notion of
Dirichlet processes to create clusters using a Markov chain Monte Carlo method,
and then fits linear models around each cluster. Radial basis functions have at-
tracted considerable attention due to their simplicity and generality. One of the
main attractions of the radial basis functions (RBFs) is that the resulting opti-
mization problem can be broken efficiently into linear and nonlinear subproblems.
Normalized RBFs are presented in [26] which perform well with limited train-
ing data. For a comprehensive treatment on various growing RBF techniques and
automatic function approximation technique using RBF, see [23] and the refer-
ences therein. See [24] for a more comprehensive review of various approximation
techniques.

The Dirichlet Cloud Radial Basis Function approximation strategy (DC-RBF)
is motivated by the need to approximate functions within stochastic search algo-
rithms where new observations arrive iteratively. As we obtain new information
from each iteration, DC-RBF provides a fast and flexible method for updating the
approximation. DC-RBF is more flexible than classical parametric models, and
provides a compact representation to minimize computational overhead. Unlike
similar algorithms in the literature, our method has only one tunable parameter,
assuming that the input data has been properly scaled.

This paper makes the following contributions: 1) We derive the knowledge gra-
dient while using a DC-RBF belief model; 2) we develop a hierarchical version of
DC-RBF, and derive the knowledge gradient for this belief model; 3) experimen-
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tal testing shows that knowledge gradient with DC-RBF model, or its hierarchical
version, generally outperforms the knowledge gradient using a nonparametric, ker-
nel belief model (previously shown to be highly competitive against a wide range
of algorithms), while scaling to higher dimensional problems.

The rest of the paper is organized as follows. Section 2 formulates the ranking
and selection model and establishes the notation used in this paper. Section 3
reviews the knowledge gradient for correlated alternatives using both lookup table
and a linear, parametric belief model. Section 4 reviews the DC-RBF approxima-
tion technique that is used for constructing the belief model in this paper and
derives the knowledge gradient using the DC-RBF belief model. Section 5 pro-
poses a hierarchical approach to the DC-RBF method to overcome shortcomings.
In Section 6, we present an asymptotic convergence proof. Section 7 showcases the
performance of the new KG-RBF using examples drawn from different problem
classes.

2 Model

We consider a finite set of alternatives X = {1, 2, ...,M}. Each alternative x ∈
X is associated with a normal distribution with an unknown mean µx and a
known variance λx. We denote µ as the vector [µ1, . . . , µM ]′. Now suppose we
have a sequence of N measurement decisions, x0, x1, . . . , xN−1 to learn about
these alternatives. At time n, if we measure alternative x, we observe

ŷn+1
x = µx + εn+1

x ,

with the sampling error εn+1
x being independent conditioned on xn = x, and

normally distributed with mean 0 and known variance λx. We also use the notation
βεx = (λx)−1 to denote the precision.

In this sequential sampling framework, it is natural to define the filtration Fn as
the σ-algebra generated by {(x0, ŷ1x0), (x1, ŷ2x1), . . . , (xn−1, ŷnxn−1)}. It is apparent
that any random variable with the superscript n is Fn-measurable. Under the
Bayesian setting, we assume a multivariate normal prior distribution on the value
of µ as our initial estimate

µ ∼ N (θ0, Σ0).

Following the definition of Fn, we denote θn := E [µ|Fn], and Σn := Cov [µ|Fn]
as the conditional mean and covariance of the posterior distribution of µ at time
n.

For an offline ranking and selection problem, the objective is to find the optimal
alternative after N measurements, where the final sampling decision is

xN = arg max
x∈X

θNx .

Let Π be the set of all possible measurement policies that satisfies xn ∈ Fn, and
π = (x0, . . . , xN−1) be a generic policy in Π. We write Eπ as the expectation
taken when the policy π is used, we can express the problem of finding a sampling
policy maximizing the expected reward as

sup
π∈Π

Eπ
[
max
x∈X

θNx

]
.

Table 1 gives a summary of the notations used in this paper.
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Table 1: Table of Notation

Variable Description
X Set of alternatives
N Maximum number of measurements
M Number of alternatives, M = |X |
µx Unknown true sampling mean of alternative x
λx Known sampling variance of alternative x
βεx Precision of a measurement, where βεx = (λx)−1

µ Column vector (µ1, . . . , µM )′

θn Mean of the posterior distribution on θ after n measurements
Σn Covariance of the posterior distribution on the alternatives after n measurements

βnx Precision of the posterior distribution of alternative x at time n, βnx = (σ2,n
x )−1

ŷn+1
x Sampling observation from measuring alternative xn

εn+1 Measurement error of alternative xn, εn+1 ∼ N (0, λxn )
xn Measurement decision at time n
α Can be viewed as a vector of coefficients, typically of lower dimension than θ
X Matrix in which each row is an alternative, where µ = Xα
Σθ,n Covariance of posterior distribution on the parameters after n measurements
Nc Number of clouds
DT Prespecified threshold distance separating clouds
ci Center of cloud Ui
Wi Width of cloud Ui

2.1 Bayesian Inference

We work in the Bayesian setting to sequentially update our estimate of the alter-
natives. At time n, suppose we select xn = x and observe ŷn+1

x , we can compute
the n+ 1 time posterior distribution with the following updating equations. ([15])

θn+1 = θn +
ŷn+1 − θnx
λx +Σnxx

Σnex, (1)

Σn+1 = Σn − Σnexe
′
xΣ

n

λx +Σnxx
, (2)

where ex is the standard basis vector. We can further rearrange equation (1) as
the time n conditional distribution of θn+1, namely

θn+1 = θn + σ̃(Σn, xn)Z, (3)

where

σ̃(Σn, x) =
√

Var [θn+1 − θn|Σn],

=
Σnex√
λx +Σnxx

, (4)

and Z is a standard normal random variable.

3 Knowledge Gradient with Correlated Beliefs

The knowledge gradient with correlated beliefs (KGCB) is introduced in [13] as a
sequential decision policy for learning alternatives with correlation. We represent
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our state of knowledge at time n as Sn := (θn, Σn). At time n, if we stop measuring
now, the corresponding value of being in state Sn is represented by the estimate
of the best alternative:

V n(Sn) = max
x′∈X

θnx′ .

Suppose we are allowed one more measurement xn = x, from which we observe
ŷn+1
x , allowing us to use the Bayesian updating equations to reach the new knowl-

edge state Sn+1(x). The value of this new state is

V n+1(Sn+1(x)) = max
x′∈X

θn+1
x′ .

We would like to maximize the expected value of V n+1(Sn+1(x)) at time n. The
incremental value of the knowledge state due to measurement x is defined as:

νKG,nx = E
[
V n+1(Sn+1(x))− V n(Sn)|Sn, xn = x

]
,

νKG,nx = E
[

max
x′∈X

θn+1
x′ |S

n, xn = x

]
− max
x′∈X

θnx′ . (5)

The knowledge gradient policy is a sampling decision that maximizes this expected
incremental value, namely:

xKG,n = arg max
x∈X

νKG,nx . (6)

[13] provides an algorithm to compute the KG values for alternatives with
correlated beliefs. First, we substitute equation (3) into the KG formula

νKG,nx = E
[

max
x′∈X

θnx′ + σ̃x′(Σ
n, xn)Z|Sn, xn = x

]
− max
x′∈X

θnx′

= h (θn, σ̃(Σn, x)) ,

where h(a, b) = E [maxi ai + biZ] − maxi ai is a generic function of any vec-
tors a and b of the same dimension. The expectation can be computed as the
point-wise maximum of affine functions ai + biZ with an algorithm of complexity
O(M2 log(M)).

The algorithm first sorts the alternatives with bi in increasing order, then
removes terms ai, bi if there is some i′ such that bi = bi′ and ai > ai′ (i.e. removing
parallel slopes with lower constant intercepts). Then it removes redundant ai′ , bi′

if for all Z ∈ R there exists some i such that i 6= i′ and ai′ + bi′Z ≤ ai+ biZ. After
all of the redundant components are dropped, we will have new vectors ã and b̃ of
dimension M̃ . Essentially, we are left with a concave set of affine functions. [13]
then shows that the function h(a, b) can be computed via

h(a, b) =
∑

i=1,...,M̃

(b̃i+1 − b̃i)f
(
−
∣∣∣∣ ãi − ãi+1

b̃i+1 − b̃i

∣∣∣∣) , (7)

where f(z) = φ(z) + zΦ(z). Here, φ(z) and Φ(z) are the normal density and
cumulative distribution functions respectively.
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3.1 Knowledge Gradient with Linear Belief Model

[32] further extends the KGCB to parametric beliefs using a linear model, namely
representing the truth µ as a linear combination of a set of parameters i.e. µ =
Xα, where elements of α are the true coefficients of the parameters. Instead of
maintaining a belief on the alternatives, we can maintain a belief on the coefficients.
If we characterize α by a normal distribution, i.e. α ∼ N (θ,Σθ), we can generate
a normal distribution on µ via linear transformation,

µ ∼ N (Xθ,XΣθXT ).

Note that θ now represents the estimate of coefficients instead of the alternatives.
Furthermore, we use Σθ to denote the covariance of the parameters. This lin-
ear transformation applies for prior and posterior distributions. At time n, if we
measure alternative xn = x, we can update θn+1 and Σθ,n+1 recursively via

θn+1 = θn +
ε̂n+1

γn
Σθ,nxn, (8)

Σθ,n+1 = Σθ,n − 1

γn

(
Σθ,nxn(xn)TΣθ,n

)
, (9)

where we define ε̂n+1 = ŷn+1 − (θn)Txn and γn = λxn + (xn)TΣθ,nxn.
The parametric model allows us to represent the alternatives in a compact

format since the dimensionality of the parameters is usually much smaller than
that of the alternatives. Suppose we have tens of thousands of alternatives; using
a lookup table belief model (as was used in [13]) would need to create and update
the covariance matrix Σn with tens of thousands of rows and columns. With
a parametric belief model, we only need to maintain the parameter covariance
matrix Σθ,n, which is determined by the dimensionality of the parameter vector
θ. In addition, we never need to compute the full matrix XΣθ,nXT , although we
will have to compute a row of this matrix.

KG with a linear, parametric model requires assuming that the parametric
model is correct. However, knowing the right parametric model or parameter space
is not always achievable in reality. For example, if we use a quadratic model to
estimate an asymmetric unimodal function (details explained in Section 4.3), the
knowledge gradient may not obtain the optimal alternative, as shown in Figure
1a. Performance can only be improved if we increase the number of parameters,
as shown in in Figure 1b.

4 Dirichlet Cloud Radial Basis Function Model

The DC-RBF is a locally parametric model which introduces a cover over the
input space to define local regions [24]. This scheme only stores a statistical rep-
resentation of data in local regions and approximates the function locally with a
low order polynomial such as a linear model, thereby avoiding the need to store
the entire history of observations as required by classical nonparametric methods
[11]. A nonlinear weighting system is associated with each local model which de-
termines the contribution of this local model to the overall model output. The
combined effect of the local approximations and the weights associated with them
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(a) Quadratic parametric model
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Fig. 1: Comparison of KG with different order polynomial models on an asymmet-
ric unimodal function.

produces a nonlinear function approximation method. This technique is efficient,
both in terms of computational time and memory requirements compared to classi-
cal nonparametric regression methods, which requires retaining the entire history.

Suppose now instead of the linear relationship µ = Xα, we have the nonlinear
relationship

µx =

∑Nc

i=1 ϕi(x|ci,Wi)x
Tαi∑Nc

i=1 ϕi(x|ci,Wi)
, (10)

where ϕi is a radial basis function with center ci and width Wi. In our model, we
employ the Gaussian kernel function

ϕ(x|c,W ) = exp(−‖x− c‖2W ),

where ‖z‖W =
√
zTW−1z. Nc is the total number of clouds, which may grow

with an increasing number of observations. Figure 2 shows the approximation of a
quadratic function with locally linear models constructed by the DC-RBF method.
The light blue lines represent the local linear parametric models. Vertical lines are
the center of the clouds and the shaded area shows the standard deviation of each
cloud.

4.1 Recursive Update of the Model

First, we define a cloud as a ball formed with the center ci and with a (user
specified) threshold radius of DT . At time n, we measure alternative xn = x, and
observe ŷn+1

x . We then need to assign the data point xn to a cloud; the resulting
cloud I is determined by the closest L2 distance

I = arg min
i
Di = arg min

i
‖xn − ci‖. (11)

We compare DI to the threshold distance DT . If DI > DT , we update the corre-
sponding cloud I with the new observation; otherwise we spawn a new cloud and
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Fig. 2: Estimates of a quadratic function using DC-RBF with DT = 2.

update the total number of clouds Nc = Nc+1. To update a particular cloud I, we
need to update the local regression model and the associated radial basis function.
Let kI be the number of data points for cloud I (note that

∑
i ki = n). If the n-th

data point is associated with cloud I, we can update the local parametric model
with recursive least squares using:

θkI+1
I = θkI

I +
ε̂kI+1

γkI

I

Σθ,kI

I xn, (12)

Σθ,kI+1
I = Σθ,kI

I − 1

γkI

I

(
Σθ,kI

I xn(xn)TΣθ,kI

I

)
, (13)

where we define ε̂kI+1 = ŷn+1−(θkI

I )Txn and γkI

I = λxn +(xn)TΣθ,kI

I xn as usual.
To update the basis function associated with cloud I, we have to update the

center and the width that defines it. We first update the center of the basis func-
tion,

ckI+1
I = ckI

I +
xn − ckI

I

kI
. (14)

Then we update the width of the kernel via the Welford formula for computing
empirical variance [27]. Note that WI is computed for each dimension separately,

SkI = SkI−1 + (xn − ckI−1)(xn − ckI ). (15)

The kI -th estimate of the variance matrix is WI = SkI

kI−1 .

4.2 Knowledge Gradient with DC-RBF Belief Model

It is apparent that equation (10) is a weighted sum of multiple linear models.
From the updating equations of DC-RBF, each data point is used to update the
local estimate of one cloud, implying the coefficient vectors αi, i = 1, · · · , Nc are
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independent. We impose a normal belief on each αi such that αi ∼ N (θi, Σ
θ
i ).

Let µ be the weighted estimate of the function at each point, which is a linear
combination of independent normal random variables, implying that µ is also a
normal random variable, where the distribution is expressed as

µ ∼ N

Nc∑
i=1

(
ϕi∑Nc

j=1 ϕj

)
Xθi,

Nc∑
i=1

(
ϕi∑Nc

j=1 ϕj

)
XΣθiX

T

(
ϕi∑Nc

j=1 ϕj

)T .

To understand this expression, we first note that the mean of the distribution is
equation (10) in vector form. Each row of X is a data point and f(X|θi) = Xθi
maps the local parametric model from the parameter space (in Rd) to the space
of the alternatives (in RM , where M � d). Each ϕi is a M ×M diagonal matrix
capturing the weight on each local approximation relative to a particular cloud i
(i.e. the basis function), given by

ϕi =

 exp(−||x1 − ci||2Wi
) · · · 0

. . .

0 · · · exp(−||xM − ci||2Wi
)

 .
The normalized RBF dictates where the local model is weighted in the data space,
with the weight being close to 1 near the center of the cloud and diminishing
quickly when moving away from the cloud. Since ϕi is diagonal, the division is
performed element-wise. In the second part, the covariance of the normal distri-
bution follows similarly. Each Σi = XΣθiX

T transforms the covariance of the
parameters to the covariance of the alternatives. We need to multiply the covari-
ance matrices by the respective radial basis functions to define the local weighting
scheme and finally sum up all the clouds.

Let Θn = {θn1 , . . . , θnNc
} be the set of local parametric coefficients at time n.

Working from our expression for the estimate of the function, we can derive the
knowledge gradient using the RBF belief structure using

f(x|Θn+1) =

∑Nc

j=1 ϕ
n+1
j xT θn+1

j∑Nc

j=1 ϕ
n+1
j

. (16)

To simplify our notation, we write ϕn+1
j (x|ci,Wi) as ϕn+1

i . Given xn is selected

at time n, and assuming xn belongs to cloud I, we can rewrite θn+1
x as,

f(x|Θn+1) =

∑
j 6=I ϕ

n
j x

T θnj∑Nc

j=1 ϕ
n+1
j

+
ϕn+1
I xT θn+1

I∑Nc

j=1 ϕ
n+1
j

.

To simplify the expression, we let Kn+1 =
∑Nc

j=1 ϕ
n+1
j . We also substitute θn+1

I

with the recursive least square update from equation (12), where γnI = λxn +

(xn)TΣθ,nI xn. This allows us to rewrite the above expression as,

f(x|Θn+1) =

∑
j 6=I ϕ

n
j x

T θnj

Kn+1
+
ϕn+1
I xT (θnI +

ŷn+1−xT θnI
γn
I

Σθ,nxn)

Kn+1

=

∑Nc

j=1 ϕ
n+1
j xT θnj

Kn+1
+
ϕn+1
I (ŷn+1

xn − xT θnI )xTΣθ,nxn

Kn+1γnI
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=

∑Nc

j=1 ϕ
n+1
j xT θnj

Kn+1
+
ϕn+1
I (f(xn|Θn)− xT θnI )xTΣθ,nxn

Kn+1γnI

+
ϕn+1
I (ŷn+1

xn − f(xn|Θn))xTΣθ,nxn

Kn+1γnI

=

∑Nc

j=1 ϕ
n+1
j xT θnj

Kn+1
+
ϕn+1
I (f(xn|Θn)− xT θnI )xTΣθ,nxn

Kn+1γnI
+ σ̃(x, xn, I)Z,

where Z = (ŷn+1
xn −f(xn|Θn))/

√
λ+Σnxnxn is a standard normal random variable

and

σ̃(x, xn, I) =
ϕn+1
I (

√
λ+Σnxnxn)xTΣθ,nxn

Kn+1γnI
.

We now have obtained the knowledge gradient,

νKG,nx = E
[

max
x′∈X

anx′(x) + bnx′(x)Z|Sn, xn = x

]
− max
x′∈X

θnx′ ,

where

anx(xn) =

∑Nc

j=1 ϕ
n+1
j xT θnj

Kn+1
+
ϕn+1
I (f(xn|Θn)− xT θnI )xTΣθ,nxn

Kn+1γnI
, (17)

bnx(xn) = σ̃(x, xn, I). (18)

This is in the form of equation (7), therefore we can apply the computation method
described for KG with correlated belief.

4.3 Demonstration of KG-RBF

In this section, we revisit the asymmetric unimodal function first illustrated in
Figure 1, and demonstrate the advantage of local parametric models over the
parametric model when optimizing this function with knowledge gradient. Our
function is defined as

f(x) = E [η1 min(x,D)]− η2x,

where D is a random variable and η = (η1, η2) are fixed parameters with η2 < η1.
Note that when η2 = η1/2, the function is symmetric. The function becomes
asymmetric when η2 is closed to η1 or 0. Figure 3a shows three functions with
different η2 settings. Furthermore, we only get to observe a noisy realization of
f(x) at each iteration f̂(x) = η1 min(x,D) − η2x + ε. This makes the problem
much harder, since we have heteroscedastic noise (the noise of a measurement is
much higher when x > D). In Figure 3b, we pick η2 = 0.9, and D is sampled
from N (35, 4). A small variance of the distribution causes the function to have
a “sharper” drop, whereas a larger variance yields a smoother decline. In this
particular example, we again set the measurement noise variance λ = 10, along
with prior beliefs θ0 = 0 and Σ0 = 104I.

For this particular problem, we set the distance threshold DT = 10. There are
five clouds generated in the DC-RBF model. We observe that KG-RBF quickly
converges to the optimal alternatives after 50 iterations, evidenced by the sampling
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Fig. 3: Examples of the asymmetric unimodal functions and an approximation of
the function using KG-RBF.

decisions concentrating around its neighborhood. However, the estimation of the
right hand side (the decreasing slope) is poor due to under-sampling and high
measurement noise. Although this does not affect the outcome of the algorithm,
we still want the local parametric model to be robust. In the subsequent section,
we propose an hierarchical approach of estimation to avoid this behavior.

5 A Hierarchical Approach for Estimation

To address the issue caused by undersampling, we propose a hierarchical approach
to estimate the posterior mean and variance using a weighted sum of multiple
estimators. We further restrict the weights to be non-negative and sum up to one
(convex combination).

We want to combine multiple levels of estimation with different DT values.
The motivation is to rely on clouds with large DT in the early iterations to esti-
mate a rough global model (i.e. exploration), then gradually use basis functions
with smaller DT values to construct finer local models and reduce bias of indi-
vidual estimates (i.e. exploitation). This can be applied to any number of levels
theoretically; however, we only use three levels to limit computational overhead.

We denote (f(x|Θ0), β0
x) as the prior mean and precision of the alternative. In

practice we use an uninformative prior, where f(x|Θ0) = 0, β0
x = 0, for all x ∈ X .

We assume the measurements for the base level (independent belief) are unbiased.
For all other levels, we need to account for bias.

Proposition 1 Let G be the set of all aggregate levels, Θg be the set of parameters
of level g, and f(x|Θg) be the estimates of x at level g, the final aggregated posterior
mean and variance can be expressed as

f(x|ΘAG,n) =
1

βAG,nx

(
β0
xf(x|Θ0) +

∑
g∈G

((σg,nx )2 + (vg,nx )2)−1f(x|Θg)

)
, (19)
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βAG,nx = β0
x +

∑
g∈G

((σg,nx )2 + (vg,nx )2)−1, (20)

where (σg,nx )2 := Var(µgx|Fn) and (vg,nx )2 := (Bias(µg,nx |Fn))2 = (En[µg,nx −µx])2.

In practice, we approximate the bias vgx = f(x|Θg) − f(x|Θ0). We follow [29]
by setting the weight on each level of aggregation as inversely proportional to the
sum of bias squared and variance, namely:

wg,nx ∝
(

(σg,nx )2 + (vg,nx )2
)−1

.

Proof We use induction to derive the weighting system. Let C be a generic subset
of G. We want to show that for C of any arbitrary size, equations (19) and (20)
hold, then we can take C = G to complete the proof.

First, consider C = ∅, then the equations clearly hold since the posterior will be
the same as the prior (f(x|Θ0), σ0

x) if there is no level. Now, suppose the equations
hold for all C of size m, and consider C′ with m+ 1 levels where C = C′ \ {k}. By
Bayes’ rule, we obtain

PC′(µx ∈ du) = PC(µx ∈ du|Y kx = y) ∝ PC(Y kx ∈ dy|µx = u)PC(µx ∈ du).

Y kx denotes the set of observations for level k. In practice there is only one set
of observations for every level, in here it is for mathematical formality that we
assume observations from each level are from a different distribution. Using our
induction hypothesis, the second part of the product can be expressed as

PC(µx ∈ du) = φ
(

(u− µC,nx )/σC,nx

)
.

For the first part of the product, we assume independence between different levels,
therefore

PC(Y
k
x ∈ dh|µx = u) = P (Y kx ∈ dh|µx = u)

=

∫
R
P (Y kx ∈ dh|µgx = w)P (µgx = w|µx = u)dw

∝
∫
R
φ

(
f(x|Θk,n)− w

σk,nx

)
φ
(w − u

vk

)
dw

∝ φ

 f(x|Θk,n)− u√
(σk,nx )2 + (vk,nx )2

 .

Combining the two parts of the product we have

PC′(µx ∈ du) ∝ φ

 f(x|Θk,n)− u√
(σk,nx )2 + (vk,nx )2

φ

(
u− µC,nx
σC,nx

)
∝ φ

(
u− f(x|ΘC

′,n)

σC
′,n
x

)
,

which can be derived by completing the square.
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Consequently, we need to update the KG derivation to reflect the aggregation
in estimation. Equation (16) now only applies to an individual level; therefore we
index the parameters of each level with a superscript g, e.g. Θg,n. Furthermore,
we let ΘG,n be the union of Θg,n for all g ∈ G. Following this convention, we see
the n+ 1 time estimate for alternative x becomes

f(x|ΘG,n+1) =
∑
g∈G

wg,n+1
x f(x|Θg,n+1)

=
∑
g∈G

wg,n+1
x

∑Nc(g)
j=1 ϕg,n+1

j xT θg,n+1
j∑Nc(g)

j=1 ϕg,n+1
j

.

We see that the posterior f(x|ΘG,n+1) is a weighted sum of the estimates of the
individual levels; therefore, the corresponding vectors (anx(xn), bnx(xn)) are also
weighted sums of,

anx(xn) =
∑
g∈G

wg,nx ag,nx (xn), (21)

bnx(xn) =
∑
g∈G

wg,nx bg,nx (xn), (22)

where ag,nx and bg,nx (xn) follow the same expression from equations (17) and (18)
computed for each individual level g ∈ G.

6 Convergence Results

In this section, we show that the HKG-RBF policy is asymptotically optimal
almost surely. In other words, HKG-RBF learns the true value of each alternative
as measurement budget N → ∞, meaning that we will find the global optimum
with probability one. The assumptions and lemmas (with proofs) used in the body
of the paper are provided in Appendix A.

Theorem 1 The HKG-RBF policy measures every alternative x ∈ X infinitely
often, almost surely.

Proof We start by defining Ω0 as the almost sure event for which our assumptions
and lemmas hold. For any ω ∈ Ω0, let X ′(ω) be the random set of alternatives
measured infinitely often by the KG-RBF policy. Assume that there is a set G ⊂
Ω0, with strictly positive probability such that for all ω ∈ G, X ′(ω) ⊂ X (strictly
subset). In other words, we measure at least one alternative for a finite number
of times with positive probability. Fix an ω ∈ G, and let L be the last time we
measure an alternative outside X ′(ω) for this ω.

Let x ∈ X ′(ω). We need to show that limn ν
KG,n
x = 0. From [13], we know

that f(z) = φ(z) + zΦ(z) is a nondecreasing function. Moreover, by the KGCB
procedure, bnj (x) is sorted in increasing order. Then,

νKG,nx ≤
∑

j=1,...,|X|−1

(bnj+1(x)− bnj (x))f(0). (23)
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Then by lemma 3, we know that limn b
n
x′(x) = 0, ∀x′ ∈ X , and for j = 1, . . . , |X |,

we have limn b
n
j (x) = 0. By letting n→∞ in equation (23), we obtain limn ν

KG,n
x =

0. This is equivalent to saying that the knowledge gradient value for infinitely sam-
pled alternatives converges to zero.

We now consider some x /∈ X ′(ω), which is an alternative that is not measured
infinitely often. We want to show that limn ν

KG,n
x > 0. We define the set J :=

{j| lim infn b
n
j (x) > 0}. By lemma 3, it follows that lim infn b

n
x(x) > 0. Now we

know that J is nonempty. Since at least one alternative is measured infinitely
often, X ′(ω) is nonempty. By lemma 3, this means that there exists at least one
alternative x′′ such that lim infn b

n
x′′(x) = 0. In other words, we also have JC being

nonempty. Then, there exists an L′ <∞ such that minj∈J b
n
j (x) > maxj /∈J b

n
j (x)

for all n > L′. Recalling that f(z) is non-decreasing and positive, we have

νKG,nx ≥ min
j∈J ,j′∈JC

(bj(x)− bj′(x))f

(
−

∣∣∣∣∣ anj − anj+1

bnj+1(x)− bnj (x)

∣∣∣∣∣
)
. (24)

Now using lemma 2, we define the upper bound U := supn,j,x |anj (x)|, with U <∞.
It follows that supn,j,x |anj (x)− anj+1(x)| ≤ 2U . So for all n ≥ L′, combining with
the monotonicity of f(z), we can derive

νKG,nx ≥ min
j∈J ,j′∈JC

(bj(x)− bj′(x))f

(
− 2U

bnj+1(x)− bnj (x)

)
. (25)

We define b̄ := minj∈J bj(x) > 0. By the continuity of f(z), we have

lim
n
νKG,nx ≥ b̄f

(
−2U

b̄

)
> 0. (26)

Now, for x′ /∈ X ′, we have limn ν
KG,n
x′ > 0. On the other hand, for x ∈ X ′, we have

limn ν
KG,n
x = 0. For x′ ∈ X ′, there exists some n > L such that limn ν

KG,n
x′ >

limn ν
KG,n
x . In other words, we will start measuring an alternative outside of X ′

some time after L. However, this contradicts with our assumption that X ′(ω) ⊂ X
and that L is the last time we measured an alternative outside of X ′(ω). Therefore
X ′(ω) = X for all ω ∈ Ω0.

Corollary 1 Under the HKG-RBF policy, limn→∞ θnx = µx almost surely for
every alternative x ∈ X . In other words, HKG-RBF will eventually find the true
optimal alternative.

Proof By Theorem 1, every alternative x is measured infinitely often. By the strong
law of large numbers, we have

lim
n→∞

f(x|Θ0,n) = µx almost surely.

Since we measure all of the alternatives infinitely often, we also have

lim
n→∞

(σg,nx )2 → 0,

for all g ∈ G and for all x ∈ X . Now we consider the weights wg,nx . Fixing x ∈
X and ω ∈ Ω, and by assumption 2, all hierarchical levels g 6= 0 have bias,
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i.e. limn v
g,n
x (ω) 6= 0. This means that limn w

g,n
x → 0 for all g 6= 0, implying

limn w
0,n
x = 1. In other words, we have

lim
n

∑
g∈G

wg,nx f(x|Θg,n) = lim
n
w0,n
x f(x|Θ0,n) = µx.

This result shows that HKG-RBF converges asymptotically to the true optimal
alternative. However, it is infeasible to measure the alternatives infinitely often in
practice. In the following section, we will demonstrate the convergence of our
method from empirical results.

7 Numerical Experiments

We ran our algorithm on continuous functions on Rd to find the global maximum
of the function. We chose from test functions for similar procedures as well as
common functions from applications. Since our algorithm is developed for problems
with finite alternatives, we need to discretize the set of alternatives. Moreover, we
assume a non-informative Bayesian prior for all the experiments. We set the prior
mean to zero and prior variance to some arbitrarily large number. At each time
step, we observe a noisy realization of the true function. In section 7.1, we compare
our algorithm on one-dimensional Gaussian processes to two other offline learning
methods. In section 7.2, we experiment on multi-dimensional test functions. In
section 7.3, we present a generalized version of the asymmetric unimodal function
in Rd.

7.1 Performance on One-Dimensional Test Functions

In this section, we compare KG-RBF to two other methods. The first is pure
exploration (Expl), where each alternative is selected with probability 1/M at
every time step. The second is the knowledge gradient with non-parametric beliefs
(KGNP) presented in [3], which uses aggregates over a set of kernel functions to
estimate the truth. We test these policies on two types of Gaussian processes.
All GP functions are defined on the discretized points x = 1, 2, . . . , 100. For all
the policies, we select the prior mean to be θ0 = 0, and prior covariance to be
Σ0 = 104I. For KGNP, we use a dictionary of Epanechnikov kernels with width
h = {5, 10, 20, 40, 80}. For KG-RBF, we select the threshold distance DT = 5 and
DT = 2. We also test the hierarchical version, HKG-RBF, with three levels DT =
{100, 5, 1}. This setting corresponds to the combination of a global parametric
model, a local parametric model, and a equivalent look-up table model.

7.1.1 Gaussian Process with Homoscedastic Covariance Functions

First we test our policies on Gaussian processes with the covariance function

Cov(i, j) = σ2 exp

(
− (i− j)2

((M − 1)ρ)2

)
,

which produces a stationary process with variance σ2 and length scale ρ. Higher
values of ρ produce fewer numbers of peaks in the domain, resulting in a smoother
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function. The variance σ2 scales the function vertically. Figure 4 illustrates ran-
domly generated Gaussian processes with different values of ρ.
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Fig. 4: Stationary Gaussian processes with different ρ

For our test functions, we fix σ2 = 0.5 and vary ρ ∈ {0.05, 0.1}. For both of
these values, we generate 500 test functions to test our policy. We use the average
opportunity cost as the performance benchmark, where

OC(n) = max
i

(µi)− µi? ,

with i? = arg maxx θ
n
x . In other words, it is the difference between the maximum

of the truth and the value of the best alternative found by the algorithm. We also
test the policies on two different sampling noise levels: the lower one with λ = 0.01
and the high noise with λ = 1

4 (max(µ)−min(µ)). The opportunity costs on a log
scale for different policies are given in Figure 5.

The single level KG-RBF with DT = 5 performs comparably to the KGNP
asymptotically in all of the examples; performance improves when we reduce DT =
2. However, smaller DT has a slower initial convergence rate. This is expected
since smaller DT requires more exploration in the beginning. HKG-RBF balances
both exploitation and exploration; it has the same asymptotic performance as the
smaller DT scenario without compromising the initial convergence rate. We also
want to point out that the opportunity cost for all KG-RBF methods does not
decrease monotonically; there is a “bump” after approximately 50 iterations. This
behavior is possibly due to poor estimates resulting from interpolation between
different clouds.

7.1.2 Gaussian Process with Heteroscedastic Covariance Functions

We now consider non-stationary covariance functions, particularly the Gibbs co-
variance function [16]. It has a similar structure to the exponential covariance
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(a) ρ = 0.1, λ = 0.01
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(b) ρ = 0.1, λ = d/4
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(c) ρ = 0.05, λ = 0.01

0 50 100 150 200
10

−2

10
−1

10
0

n

lo
g
1
0
(O

C
)

 

 

EXPL
KGNP
KG-RBF (DT=5)
KG-RBF (DT = 2)
HKG-RBF

(d) ρ = 0.05, λ = d/4

Fig. 5: Comparison of policies on homoscedastic GP, where d = max(µ)−min(µ).

function but is heteroscedastic. The Gibbs covariance function is given by

Cov(i, j) = σ2

√
2l(i)l(j)

l(i)2 + l(j)2
exp

(
− (i− j)2

l(i)2 + l(j)2

)
,

where l(i) is an arbitrary positive function in i. Here we chose a horizontally shifted
periodic sine function

l(i) = 10

(
1 + sin

(
2π

(
i

100
+ u

)))
+ 1,

where u is a uniform random number from [0, 1]. We compute the opportunity cost
as previously described. The opportunity costs on a log scale for different policies
are given in Figure 6.

In both examples, KG-RBF with DT = 5 underperforms when comparing to
KGNP; it out performs when we decrease DT = 2, especially in the low noise
scenario. Again, we notice similar behaviors for HKG-RBF, where it balances the
trade-off between exploration and exploitation.
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(b) λ = d/4

Fig. 6: Comparison of policies on heteroscedastic GP, where d = max(µ)−min(µ).

7.2 Performance on Two Dimensional Test Functions

Next we test our methods with two test functions: the Six-hump camel back [4]
and Tilted Branin [22].

The Six-hump camel back (SHCB) function is given by

f(x) = 4x21 − 2.1x41 +
1

3
x61 + x1x2 − 4x22 + 4x22,

over the domain x ∈ [−1.6, 2.4] × [−0.8, 1.2]. We discretize the domain and use a
33 × 33 on R2, which gives a total of 1089 different alternatives. For the SHCB
function, we run on two different noise variance λ = 0.122, 2.52.

The Tilted Branin (TB) function is given by

f(x) =

(
x2 −

5

4π2
x21 +

5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos(x1) + 10 +

1

2
x1,

over the domain x ∈ [−5, 10]× [0, 15]. We discretize the domain and use a 30× 30
on R2, which gives a total of 961 different alternatives. For the SHCB function,
we run on two different noise variances λ = 22, 52. For each measurement noise
setting, we test both KG-RBF and KGNP policies for 50 iterations for a total of
100 times. We provide the opportunity cost and the standard error in Table 2.

Table 2: Expected opportunity cost after 50 iterations for two dimensional test
functions

HKG-RBF KGNP
Test functions λ E[OC(50)] SE E[OC(50)] SE
Six-hump camel back 0.122 0.0411 0.0170 0.0310 0.0012

2.52 1.6716 2.2166 1.1596 0.2284
Tilted Branin 22 0.0115 0.2308 0.8414 0.2661

55 1.0094 0.6665 0.8469 0.1857
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In the low noise settings, the HKG-RBF is comparable to KGNP; it even
outperforms for the tilted branin problem. In the high noise setting, the HKG-
RBF slightly underperforms when comparing to KGNP for both functions. This
behavior is expected since these two functions are very “bumpy.” Traditional non-
parametric methods benefit from evaluating the weighted average estimate at every
single point. It is difficult for the HKG-RBF to build accurate local models with so
few data points, since each “bump” requires at least three RBF’s (or hyperplanes)
for estimation.

7.3 Application Example

We return to our asymmetric unimodal functions; this type of function appears
in many applications such as tuning black-box simulators or optimizing physical
experiments where a tunable parameter has an optimal setting interval, where
results get worse as you move away from the right setting. It is common in such
settings that the cost of being a little too high (or too low) is much higher than
the cost of being a little too low (or too high).

In the one-dimensional experiments, we fix η1 = 1 and vary η2 ∈ {0.1, 0.3, 0.7, 0.9},
which determines the slope shapes. For each η combination, we generate D from
a normal distribution with fixed mean 35 and vary the variance σ2 ∈ {0.5, 1, 2, 4}.
We also have additive noise ε ∼ N (0, 10). The domain of the function is [1, 60],
discretized by 0.2; in other words, there are 296 alternatives. We want to compare
the hierarchical KG-RBF to KG with parametric models. For the HKG-RBF we
set DT = 6. We consider two parametric models: quadratic and 4-th order poly-
nomial. We compare the opportunity cost after 50 iterations for all methods and
compare them in Table 3.

Table 3: Expected opportunity cost after 50 iterations for asymmetric unimodal
functions

.

HKG-RBF KGLinP (quadratic) KGLinP (4th order)
η2 σ2 E[OC(50)] SE E[OC(50)] SE E[OC(50)] SE
0.1 0.5 0.6765 0.5187 1.4449 0.1345 0.8325 0.2262

1 0.6984 0.6546 1.3891 0.2181 0.8299 0.4833
2 0.6882 0.6948 1.1812 0.1311 0.5451 0.1840
4 0.6010 0.5596 0.8673 0.2361 0.4460 0.4892

0.3 0.5 0.7721 0.7561 2.0998 0.1860 1.0516 0.3406
1 0.6138 0.7053 1.9214 0.4031 0.9615 0.6504
2 0.6621 0.7866 1.5709 0.2030 0.5895 0.3293
4 0.5974 0.8239 0.9544 0.3298 0.3614 0.4334

0.7 0.5 0.9611 0.7132 2.6741 0.1389 1.3643 0.2512
1 0.6780 0.6843 2.4656 0.2155 1.2047 0.3898
2 0.6261 0.6734 2.1213 0.1332 0.8321 0.2875
4 0.4050 0.4258 1.4185 0.2494 0.4245 0.3542

0.9 0.5 0.6216 0.5629 1.4288 0.0533 0.8732 0.1065
1 0.6480 0.5445 1.3523 0.0840 0.8565 0.2607
2 0.5965 0.5494 1.1607 0.0578 0.6359 0.1222
4 0.5893 0.6533 0.9091 0.0893 0.4399 0.3066
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We see that HKG-RBF outperforms the KG with parametric models when
σ is small, where the true function has a “sharp” drop at the optimal region.
However, KG with parametric models begins to outperform HKG-RBF when σ2 =
4. This behavior is expected since polynomial parametric models benefit when
there is more curvature at the optimal region. However, we see that HKG-RBF
is still comparable in performance in most cases except when σ2 = 4. When σ2

increases, the function will have a smoother curve but with higher noise variance.
Consequently, estimates of the local linear models become unreliable, but global
parametric model can better capture the optimal point.

Next, we generalize our asymmetric unimodal function to a multi-dimensional
scenario, where the true function is

f(x1, . . . , xk) =
k∑
i=1

η1,iE

min

xi,
D − i−1∑

j=1

xj

+− k∑
i=1

η2,ixi.

Similarly, we restrict that η1,i ≤ η1,i+1 and η1,i > η2.i, for all i. This function
has a simple interpretation: it is equivalent to a multi-item newsvendor problem,
where η1,i is the price item i, and η2,i is its cost. We want to find the optimal
combination of supplies (x∗1, . . . , x

∗
k) to satisfy the uncertain demand D. Once

again, we test our method against KG with a quadratic model. Even in the simple
quadratic case, the number of parameters increases proportionally to the dimension
squared. In the two-dimensional case, we pick η1,i = 〈2, 1.8〉 and η2,i = 〈1.8, 1.5〉.
We select our domain to be [0, 15] × [0, 15], discretized to 31 × 31 grid. In the
three-dimensional example, we select η1,i = 〈2, 1.8, 1.7〉 and η2,i = 〈1.9, 1.6, 1.6〉.
Similarly, the domain is [0, 15] × [0, 15] × [0, 15], discretized to 31 × 31 × 31 grid.
For both experiments, we sample D from normal distributions with mean 20 and
standard deviations of σ = {1, 4}, which represent different surface smoothness.
We also test on two different measurement noise settings, λ = {1, 9}. Table 4 shows
the opportunity costs of the 2D experiments after 50 iterations and Table 5 shows
the opportunity costs of the 3D experiments after 100 iterations.

Table 4: Expected opportunity cost after 50 iterations for 2D asymmetric unimodal
functions, where η1,i = 〈2, 1.8〉 and η2,i = 〈1.8, 1.5〉, and D ∼ N (20, λ).

.

HKG-RBF KGLinP
σ λ E[OC(50)] SE E[OC(50)] SE
1 1 1.3814 0.7852 2.1461 0.1474

9 1.5320 1.0476 2.3571 0.6400
4 1 0.7868 0.3752 1.4371 0.1860

9 0.9267 0.6104 1.5583 0.6119

We see that HKG-RBF outperforms the parametric model in all settings, espe-
cially when σ is small. Small σ represents a “sharper” hump at the optimal region,
for which KG with a parametric model cannot estimate correctly. As σ increases
(i.e., smoother surface), we see that the performance of the parametric model is
almost comparable to that of HKG-RBF, especially in the 3D examples. In the
2D experiments, increasing the measurement noise deteriorates the performance
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Table 5: Expected opportunity cost after 100 iterations for 3D asymmetric uni-
modal functions, where η1,i = 〈2, 1.8, 1.7〉 and η2,i = 〈1.9, 1.6, 1.6〉, and D ∼
N (20, λ).

.

HKG-RBF KGLinP
σ λ E[OC(100)] SE E[OC(100)] SE
1 1 1.6209 1.6840 2.6219 0.4232

9 1.5931 1.1334 2.6359 0.4409
4 1 1.8853 1.8964 2.1362 0.3394

9 1.5758 1.3175 2.1063 0.3662

of HKG-RBF. This behavior is expected since the local linear models are sensitive
to noise. However, the high noise does not affect the performance of HKG-RBF in
the 3D cases.

8 Conclusion

In this paper, we introduced an optimal learning policy to optimize an unknown
function. Our strategy is an adaptation of the knowledge gradient algorithm [13] for
correlated alternatives. Instead of a known covariance matrix, we use a statistical
method called Dirichlet cloud radial basis function [24] to define local regions
and approximate the local covariance structures. DC-RBF then uses a weighted
sum of the local models to estimate the global function. In addition, we propose
a hierarchical approach that combines multiple levels of DC-RBF with different
threshold distances DT ’s.

We proved the algorithm is asymptotically optimal, since it measures every
alternative infinitely often. Finally, we showed the performance of the HKG-RBF
on two types of one-dimensional Gaussian processes and two commonly used two
dimensional test functions. HKG-RBF generally performs better than the com-
peting methods in these experiments. We also demonstrated the advantage of
HKG-RBF over KG with parametric models on a multi-dimensional application
with asymmetric unimodal functions.

While the HKG-RBF policy performs well in simulations, there are several
shortcomings. Although the hierarchical structure improves the estimation and
removes the need to find the optimal DT , it adds computational burden to the
problem. In practice, we have to limit our models to a maximum of three levels.
Second, the number of data points required to initialize a new cloud increases
linearly with the number of dimension of the data. This becomes efficient when we
are dealing with high-dimensional data and small number of measurements. We
would like to develop a new scheme in initializing clouds that are independent of
the number of dimensions.
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A Proofs

Assumption 1 For any local parametric model θ, let θ(i) denote the i-th element of the θ.
For any i 6= j, we have lim supn→∞ |Corrn[θ(i), θ(j)]| ≤ 1 almost surely. Essentially, we claim
the correlation between parameters to be bounded by 1.

Assumption 2 For any level g ∈ G \ {0}, we have lim infn |vg,nx | > 0. In other words,
estimates for all the levels, except when g = 0, will have bias.

Lemma 1 If we have a prior on each parameter, then for any x, x′ ∈ X , we have supn |xT θ
g,n
j | <

∞ and supn |xTΣ
θ,g,n
j x′| <∞ almost surely.

Proof We can show that for any cloud j, (θnj , Σ
θ,n
j ) is a uniformly integrable martingale;

therefore, it converges to some integrable random variable (θ∞j , Σ
θ,∞
j ) almost surely.

Fix any g and j. we see that

Σθ,n+1 −Σθ,n = −
Σθ,nxn(xn)TΣθ,n

λ+Σxn,xn
,

diag(Σθ,n+1 −Σθ,n) = −
1

λ+Σxn,xn

 ζ
2
xn (1) · · · 0

. . .

0 · · · ζ2xn (d)

 ,
where ζnx (i) is the i-th element of the product Σθ,nxn. By definition, we have λ+Σxn,xn > 0.

We also note that the diag(Σθ,n) is in fact the variance of each parameter, namely Varn[θ].
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It is apparent that Varn[θ(i)] is a non-increasing sequence and bounded by zero below. For
non-diagonal elements of Σθ,n(i, j), where i 6= j, we define it as the covariance of element i
and j. By the definition of correlation, we have

Σθ,n(i, j) = Corrn[θ(i), θ(j)]
√

Varn[θ(i)]Varn[θ(j)],

|Σθ,n(i, j)| ≤ |
√

Varn[θ(i)]Varn[θ(j)]| <∞.

It follows that supn |xTΣ
θ,g,n
j x′| <∞, since all the elements of Σθ,g,nj are finite, as well as all

the alternatives x, x′ ∈ X .

Lemma 2 If we have a prior on each alternative, then for any x, x′ ∈ X , the following are
finite almost surely: supn |θ

g,n
x |, supn |a

g,n
x′ (x)|, and supn |b

g,n
x′ (x)|.

Proof We see that supn |θ
g,n
x | is finite follows from the fact that θg,nx is a convex combination

of xT θg,nj . By 1, the convex combination of finite variables is also finite.

To show that supn |a
g,n
x′ (x)| is finite, we need bound both parts of the sum as the following,

|anx′ (x)| ≤

∣∣∣∣∣
∑Nc
j=1 ϕ

n+1
j (x)xT θnj

Kn+1(x)

∣∣∣∣∣+

∣∣∣∣∣ϕn+1
I (x)(f(xn|Θn)− xT θnI )xTΣθ,nI x′

Kn+1(x)γnI

∣∣∣∣∣ .
For the first part, we a have convex combination of all the local parametric model, therefore

∣∣∣∣∣
∑Nc
j=1 ϕ

n+1
j (x)xT θnj

Kn+1(x)

∣∣∣∣∣ ≤
∑Nc
j=1 ϕ

n+1
j (x)

∣∣∣xT θnj ∣∣∣
Kn+1(x)

<∞.

By Lemma 1, the convex combination of finite values is also finite. For the second part, we see
that∣∣∣∣∣ϕn+1

I (x)(f(xn|Θn)− xT θnI )xTΣθ,nI x′

Kn+1(x)γnI

∣∣∣∣∣ =

∣∣∣∣∣ ϕn+1
I (x)

Kn+1(x)

∣∣∣∣∣
∣∣∣∣∣ (f(xn|Θn)− xT θnI )xTΣθ,nI x′

γnI

∣∣∣∣∣ ,
≤

∣∣∣∣∣ (f(xn|Θn)− xT θnI )xTΣθ,nI x′

γnI

∣∣∣∣∣ .
Using Lemma 1 again, this expression is also finite since γnI is bounded by λx > 0 below. Now
we will show that supn |b

g,n
x′ (x)| is finite. We temporarily remove the index g for clarity, then

for any cloud I,

|bnx′ (x)| =

∣∣∣∣∣ϕ
n+1
I (

√
λ+Σn

x′x′ )x
TΣθ,nI x′

Kn+1γnI

∣∣∣∣∣
≤

∣∣∣∣∣ ϕn+1
I

Kn+1

∣∣∣∣∣
∣∣∣∣∣ (
√
λ+Σn

x′x′ )x
TΣθ,nI x′

γnI

∣∣∣∣∣
≤

∣∣∣∣∣ (
√
λ+Σn

x′x′ )x
TΣθ,nI x′

γnI

∣∣∣∣∣ .
We know that supn |Σnx′x′ | <∞. It follows from Lemma 1 that supn |b

g,n
x′ (x)| is finite almost

surely.

Lemma 3 For any ω ∈ Ω, let X ′(ω) be the random set of alternatives measured infinitely
often by the KG-RBF policy. For all x, x′ ∈ X , the following statements hold almost surely,

– if x ∈ X ′, then limn bnx′ (x) = 0 and limn bnx(x′) = 0,

– if x /∈ X ′, then lim infn bnx(x) > 0.
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Proof We first consider the case where x ∈ X ′. We know that limn(σg.nx )2 → 0 for all g ∈ G.
We focus on the asymptotic behavior of weights wg,nx first. By definition, the bias of the base

level is limn v
0,n
x = 0. For g 6= 0, we have

wg,ng ≤
((σg,nx )2 + (vg,nx )2)−1

(σ0,n)−2 + ((σg,nx )2 + (vg,nx )2)−1
.

By assumption 2, all hierarchical levels g 6= 0 have bias, i.e. limn v
g,n
x 6= 0. This means that

limn w
g,n
x → 0 for all g 6= 0, implying limn w

0,n
x = 1. In other words, we have

lim
n
bnx′ (x) = lim

n

∑
g∈G

wg,n
x′ b

g,n
x′ (x) = lim

n
b0,n
x′ (x).

The DC-RBF model for the base level is equivalent to a look up table model with independent
alternatives, since we let DT to be infinitesimally small (or equivalently we let Nc = M for
the base level). Note that independence of the alternatives on the base level comes from the
fact that all of the RBF’s are independent of each other by definition. Following equation (4),
we have

b0,n
x′ (x) =

exΣ0,nex′√
λx′ +Σn

x′x′
,

where Σ0,n is the covariance matrix of the alternatives and is diagonal. It is apparent that

b0,n
x′ (x) = 0 when x′ 6= x, since the alternatives are independent. For x′ = x, we know that

the numerator exΣnex = (σnx )2, which is the posterior variance of alternative x. Since x ∈ X ′
is measured infinitely many times, we have (σnx )2 → 0. Therefore, limn bnx′ (x) = 0 under this
case as well.

If x /∈ X ′, it is equivalent to show that for any cloud I and level g ∈ G, we have

lim inf
n

σ̃(x, x, I) =
ϕn+1
I (

√
λ+Σnxx)xTΣθ,nI x

Kn+1γnI
> 0.

This becomes evident when we rearrange the expression as

lim inf
n

σ̃(x, x, I) =

(
ϕn+1
I

Kn+1

)(√
λ+Σnxx
γnI

)(
xTΣθ,nI x

)
>

(
ϕn+1
I

Kn+1

)(√
λ

γnI

)(
xTΣθ,nI x

)
> 0.

The first part of the product is greater than zero by our use of the Gaussian kernel, where
ϕ(x) > 0, for all x ∈ X . By definition Σnxx = σ2

x > 0 for a finitely sampled alternative;
therefore, the second part of the product is also lower bounded by 0. The last part of the sum

is also lower bounded by zero since Σθ,nI is a semi-definite matrix by definition. We have bnx(x)
as a convex combination of the above expression in equation (22); hence lim infn bnx(x) > 0 for
finitely sampled alternatives x /∈ X ′.


