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We consider the Bayesian ranking and selection problem, in which one wishes to allocate an information
collection budget as efficiently as possible to choose the best among several alternatives. In this problem,

the marginal value of information is not concave, leading to algorithmic difficulties and apparent paradoxes.
Among these paradoxes is that when there are many identical alternatives, it is often better to ignore some
completely and focus on a smaller number than it is to spread the measurement budget equally across all
the alternatives. We analyze the consequences of this nonconcavity in several classes of ranking and selection
problems, showing that the value of information is “eventually concave,” i.e., concave when the number of
measurements of each alternative is large enough. We also present a new fully sequential measurement strategy
that addresses the challenge that nonconcavity it presents.
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1. Introduction

Often in business we must choose from a set of alter-
natives whose values are uncertain. We typically have
the ability to learn more about each alternative, but
are constrained by time and financial budgets. A nat-
ural desire is to allocate our learning budget across
the potential decisions to most improve our chances
of making a good final decision.

Some examples of these decisions include the fol-
lowing:

* We would like to find the best supplier for a com-
ponent part. We know the price of the component, but
we do not know the reliability of the service or the
quality of the product. We can collect information on
service and product quality by placing small orders.

* We need to identify the best set of features to
include in a new laptop we are manufacturing. We
can estimate market response by running market
tests, but these are time consuming and delay the
product launch.

* We need to identify the best advertising message
to maximize the number of clicks on a website. We
can run market tests to evaluate the effectiveness of
different messages.

¢ A charter jet operator has developed a simulator
to predict the performance of a particular mix of air-
craft types. The simulator takes a day to run, and we
need to find the best mix of aircraft types.

¢ A firm must decide in which of several mutu-
ally exclusive projects they should invest. Before mak-
ing the investment, analysts at the firm can research
potential returns from some of the projects, but the
number of analysts at the firm is limited. How should
the firm allocate its analysis effort?

These are each instances of the ranking and selec-
tion (R&S) problem, which can be phrased more gen-
erally as follows. We start with a distribution of belief
about each alternative from which we must choose.
We then collect information about particular alter-
natives to improve our knowledge of them. As we
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collect more information, our knowledge of an alter-
native improves, often sharpening our ability to make
the best choice.

Now imagine, as is typically the case, that we have
a budget for collecting information. To illustrate, con-
sider the capital investment example where we must
decide in which of 50 projects to invest. Assume
we have 10 analysts. If each analyst examines five
projects, then the quality of each analysis will be quite
low and will be of little value for making decisions.
If instead we focus the firm’s analysis effort on only
10 projects, then the quality of each analysis will be
quite high, offering sufficient precision to choose the
best, but only among the 10 projects studied.

The problem of too many choices has received
recognition. In The Paradox of Choice: Why More Is Less
(Schwartz 2004), numerous examples of consumers
facing too many choices are provided, but without
any formal analysis of the implications. The allocation
of limited resources to collect information depends on
the nature of competing alternatives, our confidence
in our initial estimates, and the quality of the infor-
mation that we can collect. Intuition suggests that the
value of information should be concave in the amount
of information collected—as we collect more informa-
tion it is natural to expect that the marginal value
of this information should decrease. In fact, this is
not true. In this paper, we investigate the factors that
impact the marginal value of information and show
that because the value of information can be noncon-
cave, we may need to restrict the number of alterna-
tives we consider when trying to identify the best.

The value of information has a long history span-
ning the literatures of several disciplines. Within the
economics literature, the influential work in Stigler
(1961) considers the value of information in the prob-
lem faced by buyers searching for the best price.
The seminal work in Howard (1966) formulated the
value of information in a decision-theoretic context,
and spawned a great deal of work in this area both
within the decision-theoretic and operations research
communities and beyond, including medical deci-
sion making (see Yokota and Thompson 2004 for
a recent review) and computer science (see, e.g.,
Kaelbling et al. 1998 for its use in reinforcement
learning). The classic text Raiffa and Schlaifer (1968)
poses the Bayesian R&S problem and defines the

associated value of information, which marked the
beginning of a number of research articles treat-
ing the value of information within Bayesian R&S,
including Guttman and Tiao (1964), Tiao and Afonja
(1976), and Berger and Deely (1988). This work con-
tinues in the simulation optimization community, and
also within computer science where it is known as
the budgeted learning problem (Lizotte et al. 2003,
Kapoor and Greiner 2005, Guha and Munagala 2007,
Goel et al. 2009).

Within simulation optimization, the R&S problem
appears when allocating a computing budget to deter-
mine the set of parameters that produces the best
results in a simulation. Chen (1995) introduces opti-
mal computing budget allocation (OCBA) as a solu-
tion to this problem, which is studied in a series
of articles (Chen et al. 1996, 1997, 2000a, b). Other
algorithmic solutions include LL(S) (Chick and Inoue
2001), LL(1) (Chick et al. 2007, 2010) and the knowl-
edge gradient (Frazier et al. 2008). Although this
line of research proposes algorithms for the collection
of information, some of which are based upon the
marginal value of information, it does not formally
investigate the underlying structure of this marginal
value. For a more detailed overview of simulation
optimization from a decision-analytic perspective, see
the recent survey by Merrick (2009).

The R&S problem is related to the problem of pur-
chasing information for portfolio selection. Portfolio
selection has been studied widely, and the more spe-
cialized topic of information and its value in this con-
text has received relatively less but still substantial
attention within decision analysis. In portfolio selec-
tion, we allocate a capital budget across a collection
of projects with the goal of maximizing the value of
the projects chosen. In many cases, we may purchase
information about each project’s potential return that
will allow us to better allocate our capital. Mehrez
and Stulman (1984) give a formal statement of one
version of this problem, which is expanded and gen-
eralized by Mehrez and Sethi (1989). Keisler (2004)
presents a simulation study and argues that the value
of obtaining perfect information about every project
is not much larger than simply using prior informa-
tion in an intelligent way. Bickel et al. (2008) study the
value of seismic information for selecting a portfolio
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of oil or gas wells to be drilled, building on a substan-
tial body of research studying the value of informa-
tion for oil and gas development (see Bratvold et al.
2007 for a survey).

The structure of the value of information, and in
particular its lack of concavity, has been explored
in many information collection problems other than
R&S. Howard (1966) describes an auction problem
in which the value of perfect information may be
superadditive, i.e., the value of acquiring two different
pieces of information together may be greater than the
sum of the values of acquiring each one individually.
Radner and Stiglitz (1984) show general conditions
under which the value of sampling is not concave.
Chade and Schlee (2002) and De Lara and Gilotte
(2007) extend these results to more general settings.
In a project selection problem, Samson et al. (1989)
show that the value of information is not additive.
Moscarini and Smith (2002) give asymptotic condi-
tions under which the value of information is con-
cave in a finite-state setting with a single information
source. In a modified version of the R&S problem,
Weibull et al. (2007) demonstrate that nonconcavities
in the value of information can lead to paradoxical dis-
continuities in optimal behavior, and Mattsson et al.
(2004) describe in an unpublished working paper a
case where it may be better to select an alternative that
appears to be worse. Bickel and Smith (2006) demon-
strate, using the setting of oil exploration (as a form of
information collection), that information collection can
exhibit increasing marginal returns but do not address
the more general problem of allocating resources for
information collection.

We use the R&S framework with a single stage
of normal samples of known variance to study the
structure of the marginal value of information and
to characterize its concavity. Although there are cases
in which the value of information is not concave, we
show that there exist thresholds such that the value of
information is concave when the number of measure-
ments of each alternative exceeds the corresponding
threshold. We call this property “eventual concavity,”
and it may be understood as implying that the value
of information is concave as long as the number of
measurements is large enough. In the special case of
measuring a single alternative, we give an explicit

expression for the region on which the value of infor-
mation is concave.

Although this eventual concavity result demon-
strates that lack of concavity occurs in a restricted
set of situations, it is nevertheless important in some
cases. We illustrate some paradoxes that result from
the nonconcavity, including the possible nonoptimal-
ity of spreading the measurement budget equally
among the alternatives when the prior is symmetric. It
may be better to completely ignore some alternatives
(chosen completely at random) and to allocate the
remaining budget among those that remain. Although
paradoxes resulting from the lack of concavity in
the value of information in other problems have
been described in the literature, the strange behaviors
resulting from this lack of concavity in R&S have not
been fully explored elsewhere.

We also consider sequential measurement policies,
where the nonconcavity of information can cause
difficulties for algorithms that allocate one or a
small number of measurements at a time based on
value of information calculations. Such difficulties
with myopic policies have been noted and explored
in the artificial intelligence community. Heckerman
et al. (1993) propose valuing batches (sets) of mea-
surements instead of individual measurements, and
provide an asymptotic approximation based on the
central limit theorem for doing so. Bilgic and Getoor
(2007) present a data structure for efficient compu-
tation of the value of acquiring sets of features in a
cost-sensitive classification problem, and present algo-
rithms using these values that outperform a myopic
policy. Krause and Guestrin (2005) provide algo-
rithms and hardness results for computing optimal
batches of measurements and optimal sequential poli-
cies. Tolpin and Shimony (2009) provide a patholog-
ical example in which the myopic policy performs
poorly.

We describe a policy, called KG(x), for overcoming
the complications introduced by nonconcavity in the
value of information (KG abbreviates “knowledge gra-
dient”). This policy is related to the Blinkered value
of information (BVI), which was introduced in Tolpin
and Shimony (2009) to address similar concerns about
myopic value of information calculations. KG(x) was
introduced by (Chick and Frazier 2009a, b) as part of



o~
&, 1
p—

o
23
=

5 E
© o
RSl
o c
=
©
2
=
@2
23
> 2
O +
o <
=
@ ©
nQ
i
b
58
O ®©
2
£y
32
=
.-QQ-
= C
@ 9
S 3
o2
2 E
T O
o2
o2
T ©
T
1]
0 £
c .2
e

o
==
— O
£ 3

O O
= £
E -
c
[e]
8 e
S =
o O
<E
U,_
©
= C
e o
=
Q35
Z-c
=<

Frazier and Powell: Paradoxes in Learning and the Marginal Value of Information

Decision Analysis 7(4), pp. 378403, ©2010 INFORMS

381

a larger numerical study, who described it only very
briefly. We provide a more complete description.

We start by describing the Bayesian R&S problem
formally in §2. We also give preliminary results to be
used later. We then discuss geometric properties of
the value of information in a number of special cases.
Section 3 considers the case in which we measure only
a single alternative. Section 4 considers the case of a
homogeneous prior. Section 5 considers the case of
only two alternatives. In §6 we return to the general
problem, present an example in which the noncon-
cavity of the value of information causes nonintuitive
behavior in the optimal allocation, and give a theo-
retical result that shows that the value of informa-
tion is “eventually concave” in the sense that there
exists a region of the measurement space that expands
out to infinity in all directions on which the value of
information is concave. Section 7 considers the conse-
quences of nonconcavity for sequential measurement
policies and describes the KG(x) policy for overcom-
ing this nonconcavity. Except where provided in the
text, proofs may be found in the appendix.

2. The Ranking and Selection

Problem

We begin by providing a formal definition of the R&S
problem. This definition follows the standard defi-
nition in the literature (e.g., see Raiffa and Schlaifer
1968). Suppose that we have a collection of M alter-
natives, and associated with each of these alternatives
is a sampling distribution. The sampling distribution
for alternative i € {1,..., M} is normal with mean
6; and variance A;, and samples are independent of
each other when conditioned on 6, ..., 8,,. The sam-
pling variances Ay, ..., A;; are known, but the sam-
pling means 6,, ..., 6, are unknown. We begin with
a normally distributed Bayesian prior belief on the
sampling means that is independent across alterna-
tives, 6, ~ N (u;, 7). We allow o? to be 0, in which
case ¢; is known and equal to w;. This may be used to
model an alternative with known value, and can also
model a decision maker’s option of not selecting any
alternative. This may be accomplished by adding an
extra alternative with o2 =0 and u; = 0. We refer to
the vector [6,, ..., 0] as 6. The vectors u and o? are
defined similarly.

In this problem we are interested in determin-
ing through sampling which of the alternatives has
the largest sampling mean. Consider any sampling
allocation n € Z!, by which we mean the sampling
strategy that draws n; samples from each alterna-
tive i, where i ranges over 1,..., M. Here, Z =
{0,1,...}. Call the resulting set of observations Y.
It can then be shown (see, e.g., DeGroot 1970) that
the posterior distribution on 6 is normal with inde-
pendent components. The posterior variance of 6; is
Var[6; | Y, n] = (1/0? 4+ n;/X;)~". In this setting, taking
more samples n; always reduces this posterior vari-
ance, although this need not be true in more general
sampling settings. Note that this posterior variance
does not depend on the observations Y. The poste-
rior mean E[6; | Y, n], on the other hand, does depend
on the observations. Its predictive distribution is nor-
mal, and the mean of this predictive distribution is
given by the tower property of conditional expecta-
tion, E[E[6; | Y, n]] = E[6,] = u;. We denote by &72(n;)
the variance of the predictive distribution, and it can
be computed by the conditional variance formula as

&7 (n;) = Var[E[6; | Y, n]]
= Var[6;,] — E[Var[6; | Y]]

1 n\" o’n;
=0 | =+ =it 1
7 (0'-2+/\i> (\i/o?) +n; @

1

We write ¢(n) to indicate the vector [dy(ny),...,
0(n)]. Expressions for the first and second deriva-
tives of &; are needed in proofs, and are provided in
the appendix in Lemma 2.

It is important to keep in mind that there are
four distinct but related normal distributions in-
volved with this problem. First, there is the sam-
pling distribution /¥ (0;, A;) that governs the samples
observed from alternative i. Then, there is the prior
N(w;, o?) on 6; as well as the posterior N(E[6;|Y, n],
Var[6;|Y, n]). Finally, because E[6; | Y, n] is a condi-
tional expectation whose value is unknown until the
observations Y are seen, it also has a distribution that
is N(u;, 57 (1))

After sampling according to the sampling alloca-
tion n, which directs us to take n; samples from each
alternative i, we choose one alternative and receive
a reward equal to its sampling mean. Assuming that
we are most interested in maximizing the expected
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Figure 1 Influence Diagram of the Ranking and Selection Problem

Sampling
decision
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Sampling
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Note. The optimal selection decision is arg max; E[6; | Y, n], and it has value
max; E[§; | Y, n].

value of this reward, and have no risk aversion, the
best choice is the alternative with the largest posterior
mean E[6; | Y, n], and the expected value of choosing
this alternative is max;E[6; | Y, n]. Figure 1 shows an
influence diagram that describes this situation.

We now calculate the value v(n) of the information
obtained from the sampling allocation n. This value
of information v(n) is defined to be the incremental
improvement over the best expected value that can be
obtained without measurement, which is max; w;.

o(n) = [E[m;jax[E[O,- 1Y, ] ‘ n] —maxp. (2)

Given a sampling budget N € Z, the R&S problem
is to find the sampling allocation satisfying the budget
constraint > _; n; < N that maximizes the value of the
information obtained; that is,

maXx
M
nez+ Y ini<N

v(n). (3)

If the prior parameters u and o2 come directly from
a practitioner’s initial belief, this problem is called
the single-stage Bayesian R&S problem. If, instead,
w and o? are the parameters of a posterior resulting
from the combination of some initial belief and some
previous set of measurements, this problem is the
second stage of what is called a two-stage Bayesian
R&S problem. In this article, we study the structure
of the function v, interesting both on its own and as a
foundation for solving one-stage, two-stage, and fully
sequential (see §7) Bayesian R&S problems.

We may obtain an expression for v(rn) that is more
explicit than (2) using the predictive distribu-
tion E[6; | Y, n] ~ N (u;, 37(n;)). Defining independent
standard normals Z,,...,Zy by Z; = (E[6; | Y, n] —
i)/ 0i(n;), we have

v(n) = [E[mlaxui —l—&i(ni)Zi] — max ;. 4)

This expression offers a convenient platform for
analysis. When suitably transformed, it can also be
computed efficiently as a one-dimensional integral of
a function of normal cumulative distribution func-
tions. For details, see §4 of Ross (2003), which treats
this computation under the name “the independent,
different distributions case.”

Although sampling allocations 7 are generally
discrete in nature, we may extend the function v con-
tinuously onto RY using the definition (4). By drop-
ping the integrality constraint in (3) and solving the
resulting relaxed problem, we obtain an upper bound
on the value of the optimal integral solution. Also,
by rounding the solution to the relaxed problem, we
obtain a feasible solution to (3) and a lower bound
on the value of the optimal integral solution. If the
gap between upper and lower bounds is small, we
may take the rounded solution as a good suboptimal
allocation.

Although the primary motivation for the continu-
ous extension of v is as an analytically convenient tool
for obtaining approximate solutions to the integer-
constrained R&S problem (3), one may also consider
problems in which observation occurs continuously
through time, and the measurement variance A, is the
variance per unit time of the observation process. In
this case, the value #; is the amount of time to observe
alternative i, and need not satisfy an integrality con-
straint. Such problems are considered elsewhere in the
literature (see, e.g., Chick and Frazier 2009).

It is sometimes useful to work with v in terms of a
function g: R¥ i R, defined by

g(s)= [E[max Mit+ SiZi] — Maxp;. ©)

This definition is chosen so that v(n) = g(o(n)).
Expressions for the first and second partial deriva-
tives of g are needed in proofs, and are provided in
the appendix in Lemmas 3 and 4.
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Figure 2
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Notes. The left-hand plot shows the value, and the right-hand plot shows the (natural) log of its value. In this example, o; =1, A; =1, and A, =10.

We conclude by noting the following remark, which
is useful in computation. Here and throughout, ® is
the standard normal cumulative distribution func-
tion, and ¢ is the standard normal probability density
function.

Remark 1. For c e R, and Z a standard normal
random variable,

E[Z1;.] zexp(—z%/2) dz

1

- N2 e, )
1

= — exp(—u)du = ¢(c),
o p(—u) ®(c)

which follows from the substitution u = z2/2.

3. Measuring a Single Alternative

We begin by studying the structure of the function
n; — v(ne;) for a fixed alternative i. This function
gives the value of measuring that alternative n times
without measuring any other alternatives.

This function and its derivative may be computed
analytically, as in the following proposition. We pro-
vide a proof in the appendix for completeness, but its
development is similar to proofs that may be found
elsewhere, including Frazier et al. (2008) and Gupta
and Miescke (1996).

ProPOSITION 1. Define a constant A; = |u; —max;.; u|
and a function f: R~ R by f(z) =z®(z) + ¢(z). Then,

o(e) = { g,(n,-)f(—Ai/&,-(ni» Zz: ZS

d - A,
%v(n,-ei) =0;(n)e (m) for n; > 0.

1

This proposition shows that the value of measure-
ment increases with the number of measurements.
This monotonicity is natural because more informa-
tion often (but not always) allows us to make better
decisions. Although more information is often help-
ful, there will be some random outcomes for which
it is not: an additional sample might fail to change
our decision, or it might even change our decision for
the worse. In our problem, monotonicity only holds
in expectation.

The value of measurement is plotted in Figure 2
for A; =10. The prior variance o7 and the noise vari-
ance A; are both fixed to 1.

Notice that the value of measurement is not con-
cave in general. It is concave when there are many
measurements, but when there are few the value of
measurement may be initially convex. This is espe-
cially true when the measurement noise is large rela-
tive to the differences between alternatives. This lack
of concavity may be understood by realizing that
when measurements are few and/or noisy, it is very
unlikely that they will provide enough evidence to
cause us to change our mind about which alterna-
tive is best. Even if the alternative being measured is
actually better than the other alternatives, the strength
of our prior and the weakness of the evidence from
measurement will cause us to ignore the evidence
collected. Instead, we will choose as best the same
alternative that we thought was best before the mea-
surements. Only when measurements are sufficiently
precise or numerous will they have the ability to affect
our ultimate decision.
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We may think of 0;(n) as one measure of the
amount of information collected. Indeed, &*(n) is the
variance of the change in our belief due to measure-
ment. As noted previously, & (n) is concave in n. But
v(n;e;) = g(0;(n;)e;), and g is a convex function. We
may think of g as the function which translates a
more well-behaved measure of the amount of infor-
mation collected into the value of that information.
Thus, even if the “amount” of information collected
is concave in the number of measurements, the ability
of this information to affect the final decision can be
nonconcave, and so is its overall value. In some sense,
it is the discreteness of the ultimate implementation
decision that causes this nonconcavity in the value of
measurement.

In the case in which we only measure a single
alternative, the following theorem completely char-
acterizes convexity and concavity of the value of
measurement.

THEOREM 1. n; — v(n;e;) is convex on (0, n}] and con-
cave on (n}, ), where

* /\i
= &?[Af — ot VA + 1ot 1ol | (6)

1

This theorem tells us that, when A; or A; is larger,
the region of nonconcavity is larger. This makes sense
in light of our previous understanding, because larger
values for A; or A; imply that we need a more sub-
stantial body of evidence (in the form of more mea-
surements) to affect our decision making.

Theorem 1 has as a consequence the following
corollary, which gives two conditions under which
the value of measuring an alternative is concave
everywhere. When an alternative is tied for the best
(A;=0), even a single measurement with very large
measurement noise is enough to cause us to change
our decision—our prior belief is ambivalent about
which implementation decision is better, and so there
is no bias imposed by the prior that measurements
must overcome. This is reminiscent of the related
observation (Fatti et al. 1987, Bickel 2008, Delquié
2008) that the value of information is maximized
when the prior belief is ambivalent between alterna-
tives. When measurements are perfect (A; = 0), any
nonzero amount of measurement is enough to over-
come any bias imposed by the prior.

CoroLLARY 1. If A; =0 or A; =0, then n; — v(n,e;) is
concave on R, .

Proor. A;=0 or A; =0 imply n} =0, and concavity
on R, , follows from Theorem 1. O

We also have another type of structure in the single-
measurement case which is given in the following
proposition. This proposition shows log-concavity of
the value of measurement, but only for a measure-
ment of a single alternative.

ProOPOSITION 2. For each alternative i, the function
n; — v(n,e;) with domain R, is log-concave.

4. The Homogeneous Case
Consider the measurement problem that arises when
our prior parameters and measurement variances are
constant across alternatives, i.e., u; =u, o7 = 0%, and
A; = A for all i and some w, o2, and A. We call such
measurement problems homogeneous.

Homogeneous problems are quite common in prac-
tice. They arise when we cannot distinguish between
alternatives before measuring them, but we are will-
ing to make a priori judgments of the population as a
whole. As an example, consider evaluating job appli-
cants. Fairness may require that we do not favor a
priori one applicant over another (i.e., that u; and o7
are constant), but our past experience gives us a good
idea of the distribution of quality within the applicant
pool as a whole (guiding our choice of u and ¢?). In
other situations, for example, when evaluating differ-
ent designs for a very complex and poorly understood
system using simulation, the a priori indistinguisha-
bility between alternatives may arise from a lack of
strong prior knowledge or a desire for objectivity. In
still other situations, for example, when purchasing a
piece of capital equipment from among several of the
same model produced by the same company, it may
arise because alternatives genuinely lack distinguish-
ing characteristics.

As noted previously, the value of information is not
concave in general, and this lack of concavity may
be seen in the homogeneous case. Figure 3 shows
the value of information for a homogeneous problem
with M = 100 alternatives, w =0, 0> =10, and A =
10°. The value of information is pictured as a func-
tion of the number of measurements of the first alter-
native, where exactly one measurement is allocated
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Figure 3
and =108
<1078 (@0<n <10
4
3
g
Gl 2
>
1
0
0 2 4 6 8 10
ny

Note. Two different ranges of n, are pictured.

to each of the other alternatives. The figure clearly
shows that the value of information is not concave
in n,;. This lack of concavity occurs despite the fact
that constant w; implies A; =0, and so Corollary 1
shows that the value of measuring a single alterna-
tive is concave. This seeming disparity may be under-
stood by realizing that, after measuring all but the
first alternative, alternative 1 must overcome a gap of
(max;; E[0; | Y, n]) — u, to be implemented.

In the homogeneous case, intuition and symmetry
suggest that our best course of action would be to
spread our measurement budget equally across the
alternatives. Indeed, existing general purpose allo-
cation techniques for this single-stage R&S problem
with linear loss, LL(B) (Chick and Inoue 2001) and
OCBA for linear loss (He et al. 2007), both rec-
ommend the equal allocation in the homogeneous
case. (Although they recommend equal allocation in
the homogeneous case, they make other recommen-
dations in other cases). Furthermore, the following
proposition shows that if the value of information
were concave, then spreading the budget equally
would be optimal. This is accomplished by considering
a hypothetical function u that has several properties
possessed by the value of information v in the homo-
geneous case (monotonicity, continuity, symmetry), as
well as the additional property of concavity.

PROPOSITION 3. Let u: R +— R be a concave continu-
ous function that is nondecreasing and symmetric. Then a
solution to the optimization problem max{u(n): n € RY,
>in; <N} occurs at n=(N/M, ..., N/M).

The Value of Information as a Function of n, for a Homogeneous Problem with /7 = 100 Alternatives, n, =1 for i > 1, u =0, ¢ =10,

(b) 0 < ny <1,000

0 200 400 600 800 1,000
ny

Unlike functions u considered in Proposition 3, the
value of information v is not concave, and thus this
proposition provides no guarantee that the maximal
value is obtained by spreading the measurement bud-
get equally across the alternatives. Indeed, despite our
intuition, the equal allocation is often suboptimal and
we, can often obtain more value by focusing our sam-
pling on a strict subset of the alternatives and ignor-
ing the rest.

To formalize this class of policies that focus effort
on less than the full set of alternatives, let m < M be
an integer. The allocation given by m is the one that
chooses m alternatives uniformly at random from the
full set of M alternatives. It then allocates the mea-
surement budget equally across these m alternatives,
so each one receives N /m measurements. This class of
policies includes the equal allocation policy as m = M.

Figure 4(a) shows the value obtained by such poli-
cies. Each line in the plot shows, for a different
value of the measurement noise A, the value obtained
as a function of m. The problems considered have
M =50 alternatives, a measurement budget of N =50,
and a homogeneous prior u =0, o2 = 1. The val-
ues of A generating each line, from top to bottom,
are 1/2,1,2,4,8, and 16. Circles show the maximum
attained by each line.

From the rightmost edge of the figure, where
m=M and the policy pursued is the equal alloca-
tion policy, we see that the equal allocation policy is
often suboptimal. The only case pictured for which
equal allocation is optimal is the top line, A =1/2.
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Figure 4 Plots Use u =0, ¢ =1, and M =N =50
(a) Allocation value as a function of m (b) Optimal m as a function of r
2.0 T 60
50
B 157
£ g 40
© —
= ©
8 £ 30
o °
S 1.0 le)
©
K 20
10
0.5
n 0 n n
1 25 50 1072 107" 10° 10’

Number of alternatives measured (m)

r

Notes. Panel (a) shows the value of allocations that spread the measurement budget equally across m < M alternatives in the homogeneous case. From top
to bottom, the lines use A =1/2,1,2, 4,8, and 16. Circles show the maximal point on each line. Panel (b) shows the optimal m as a function of r = A/c?N.
The line shows the continuous approximation m*(r), and circles show exact solutions to the discrete problem.

As we move down the figure and the noise variance
A increases, the equal allocation becomes more sub-
optimal. Thus, when the measurement noise is large,
one may improve significantly upon the naive equal
allocation policy by ignoring some alternatives com-
pletely and focusing measurement effort on those that
remain. Equal allocation over the full set of alterna-
tives dilutes the measurement budget, whereas ignor-
ing some alternatives and allocating the measurement
budget over those that remain concentrates it, and
allows enough evidence to accumulate to affect our
decisions in a significant way. As the noise variance
increases, we need to further concentrate the budget,
and we must ignore more alternatives.

We now provide an expression for allocation value
as a function of m that is useful for finding the best
value of m. The value of the allocation generated by
m is v((N/m) Y., e;), which implicitly depends upon
M, A, and o in addition to depending explicitly on
N and m. Momentarily fix m and write the value of
the corresponding allocation,

N Z - (N
v<a E ei) = [E|:max Wi+ 0',»<E1{i§m}>zi] —max g,

+
E[(max&igzl)} ifm<M,

E[max&iﬁzi] if m=M.
m

i<m

Define r = A/(No?), so that &;(N/m) = o//1+rm.
Then,

oF [ (max(l + rm)‘l/ZZl) +]

ol — ei =
mi “12
oE|max(1+4rm)~/*Z,
if m= M.

These expressions may be evaluated using one-
dimensional numerical integration. We provide
details for the case m < M, and the case m = M
may be evaluated similarly. Let w(m, r) be the value
obtained given r and m < M.

w(m, r) = [E[Iﬂ?nx(l + rm)‘l/zzi]

= / P{max(1+4rm)"?Z, > u} du.
0

1<m

We rewrite the inner probability as
P{rg?ﬂxzi>um} = 1—@{1%xz,.5um}
1-P{Z; <uv1+rm, Vi<m}
—P{Z, <uv/1+rm}"
= 1—<I><u 1+rm>m

Thus, the value obtained for m < M is

w(m,r):/(;ml—fb(u 1+rm)m du.
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This expression for w(m, r) extends continuously to
nonintegral values of m.

We may find the best m simply by evaluating
v((N/m) X[ e;)/o over theset me (1, ..., M}. Equiv-
alently, we may divide this expression by the constant
o and optimize that expression instead. Observe that
v((N/m) Y, e;)/o depends only upon r for m < M.

This leads us to recommend the following method
for finding an approximately optimal value of m.
We temporarily drop the integrality constraint and
upper and lower bounds on m, allowing it to take
values in (0, ), and solve the resulting continu-
ous optimization problem. Let m*(r) be the solution,
m*(r) = argmax,, ., ., w(m, r). The solution depends
only upon r and is plotted in Figure 4(b), along with
the optimal solution for the original discrete prob-
lem that retains the integrality constraint. The figure
shows that m*(r) accurately approximates the discrete
solution in the example considered.

In Figure 4(b), as 1/r decreases, the optimal m*(r)
decreases. Recalling the definition 1/r = No?/A, we
see that decreasing either N/A or the prior variance o
causes m*(r) to decrease as well. The quantity N/A
is an “effective” measurement budget, and gives the
total measurement precision that may be partitioned
among the alternatives. When it is smaller, discern-
ing the best alternative is more difficult. When o? is
smaller, the value of different alternatives are typi-
cally closer together, and it is again harder to discern
the best alternative. Thus, decreasing either quantity
forces us to concentrate our measurement budget onto
a smaller number of alternatives. This generalizes the
observation from Figure 4(a) that as the measurement
precision 1/A decreases, so too does m*(r).

5. The Two-Alternative Case

We now briefly consider the case when the number
of alternatives M is exactly 2 and the concavity of the
value of information in this case. Because of a certain
symmetry, this case is much easier to analyze than
the case where M > 2, and it has been studied exten-
sively in the decision analysis literature (Fatti et al.
1987, Bickel 2008, Delquié 2008). The optimal alloca-
tion is described by Raiffa and Schlaifer (1968). We
briefly review this optimal allocation and its impact
on the concavity of the value of information.

First, we have the following easy-to-use expression
for the value of information. This expression is well-
known in the literature (see, e.g., Raiffa and Schlaifer
1968). Although the proof is straightforward, we pro-
vide one in the appendix for completeness.

LeEMMA 1. Suppose M =2, and let

s(n) = V a1 (ny) + 3 ().

Then v(n) =s(n) f (—|uy — mo|/s(n)), where we recall that
f(2) =2P(2) + ¢(2).

Although s(n) = \/07(n;) + 03 (n,) is a concave func-
tion, neither f nor v is generally concave. Despite
this lack of concavity, the optimal allocation is easily
obtained by transforming the problem. The function
s> sf (—|wq — po|/s) is strictly increasing (because f is
strictly increasing), and so maximizing the noncon-
cave function v(n) is equivalent to maximizing s(n).
Furthermore, because s /s is strictly monotonic on
R, maximizing s(n) (and hence also v(#n)) is the same
as maximizing s(n)* = % (n,) + 73 (n,).

When measurement variances are equal, this max-
imization is accomplished by allocating one sample
at a time to the alternative with the largest posterior
variance. Note that the posterior variance is a deter-
ministic function of the number of samples allocated,
and so the resulting allocation is deterministic. If the
prior variances are equal across alternatives and the
sample size is even, then this results in an equal allo-
cation. This deterministic allocation is also optimal
among all sequential allocations (Frazier et al. 2008).

The value of information is not concave in gen-
eral in the two-alternative case, as is easily seen by
noting that the nonconcavity of the value of measur-
ing a single alternative occurs in the two-alternative
case. However, we do have concavity in a special case
noted in the following remark.

ReMARK 2. The value of information is concave
when M =2 and p, = u,. This is because Lemma 1
implies

o(n) =s(n)f(0) = ¢ (0)

a1 (ny) + 63(ny),

which is concave.
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6. The General Case

We now consider the general case, with no special
assumptions on u, o, M, or the number of alterna-
tives measured. We begin with an example in which
the lack of concavity in the value of measurement has
a dramatic and counterintuitive effect on the optimal
allocation. We then present a theoretical result that
shows, despite the existence of such oddly behaved
examples, the value of information is concave over a
space of sufficiently large allocations. This may allow
finding the optimal allocation, or a reasonably tight
lower bound, by optimizing over this space using effi-
cient convex programming algorithms.

Consider an example with M =3 alternatives and
prior u=[1,1,0] and o= [0, 0.005, 0.5]. Under this
prior, we know the value of the first alternative
perfectly, we have a strong belief that the second
alternative’s value close to 1, and we think the third
alternative is smaller (close to 0) but we are uncertain
about this.

We consider different measurement budgets N, and
for each one we find the optimal allocation. Because
this illustrative example has a very small number of
alternatives, we can find the optimal allocation by
enumerating the set of possible allocations, calculat-
ing the value of each, and choosing the one with the
largest value. The optimal policy allocates no mea-
surements to the first alternative because its value
is already known perfectly, so the set of allocations

Figure 5

Value of Information in the Example from the Text with x =[1,1,

(@) 0.04-

0.03

0.02

Expected value

0.01

0.00

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Percent of samples taken from alternative 2

given N is {x € Z3: x, =0, x, +x; = N}, and any alloca-
tion in this set is completely determined by the choice
of, say, x,.

Figure 5 shows the value of various allocations in
this example, as well as the behavior of the optimal
allocation. Each line in Figure 5(a) shows the value
obtained for a single value of N as a function of the
proportion x,/N. The optimal proportion for a given
value of N is the maximal point on the correspond-
ing curve. As N increases, the value increases and
the optimal proportion changes. Figure 5(b) shows the
optimal proportion as a function of N. The circles are
optimal among those restricted to integral numbers
of measurements, whereas the dashed line is optimal
among all allocations.

When we have a single measurement to make
(N =1), the optimal allocation measures alternative 2,
which is the one whose mean is largest but whose
variance is extremely small. When our measurement
budget is just slightly larger (1 < N < 4), the opti-
mal allocation switches abruptly and spends its entire
sampling budget on alternative 3, which is the one
with smaller mean but larger variance. This dramatic
shift in behavior is due to the lack of concavity in
the value of sampling, and parallels similar behavior
observed in the homogeneous case.

As N increases further (N > 4), we suffer dimin-
ishing marginal returns from measurements of the
low-mean high-variance alternative, and the optimal
allocation allocates some of the growing measurement

0], 0% =[0,0.005,0.5], and A =1

C
=)

1.0

0.8

0.6

0.4+

. 0.2

Percentage of samples allocated
to alt. 2 under best allocation

0.0

T T T T
50 100 150 200

Total number of measurements (N)

o+

Notes. Panel (a) shows the value of the full range of allocations possible for various total measurement budgets V. Panel (b) shows the optimal allocation as
a percentage of samples taken from the second alternative both with integrality constraints (circles) and without (dashed line).
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budget to the low-variance alternative. The proportion
of samples allocated to the low-variance alternative is
small initially, but then grows toward an asymptotic
level. This asymptotic level does not depend on the
prior variances—only upon the prior means.

The asymptotic proportion toward which the opti-
mal policy is growing is the proportion that is optimal
for large values of N. In this example, the asymptotic
proportion is approximately 0.84. (This was estab-
lished by calculating the optimal proportion for finite
but very large values of N, and observing that the
optimal proportions were all between 0.8383 and
0.8385 for values tested from 10° up to the largest
value tested, 10'°.) This asymptotic proportion is often
far from the optimal proportion for the given value
of N. For example, Figure 5(b) shows that the best
proportion when N =25 is 0.36, which is quite far
from 0.84. The predominant methods for finding good
single-stage allocations, LL(B) (Chick and Inoue 2001)
and the OCBA (Chen 1996, He et al. 2007), approx-
imate this optimal asymptotic proportion and then
suggest that we allocate our available (finite) sam-
pling budget according to this proportion. The differ-
ence between asymptotic and finite-horizon optimal
proportions and its effect on these policies may be an
interesting topic for future research.

Figure 6 shows contours of the value of informa-
tion for this example, as well as circles for the optimal
(integrality-constrained) allocations for values of N
up to 11. It also shows a dark solid line dividing the
region on which the value of information is not con-
cave (to the left of the line) from the region on which
it is concave (right of the line). Although the value
of information is not concave in general, it is con-
cave on most of the domain. Furthermore, the opti-
mal policy’s switch from putting all its measurements
on alternative 2 to putting all on alternative 3 occurs
as we transition from the nonconcave to the concave
regions. Afterward, in the concave region, the optimal
allocation behaves more reasonably. Figure 7 shows
similar partitions of the allocation space into regions
on which the value of information is concave and
nonconcave for this prior and two others. In all three
priors, we see that, as long as the number of measure-
ments allocated to each alternative is large enough,
the value of information is concave.

Figure 6

Value of Information Contours for . =[1,1,0],
a2 =10,0.005,0.5], and A =1

Notes. Circles show optimal integrality-constrained allocations. The dark
vertical line separates the region on which the value of information is not
concave (left of the line) from the region where it is.

The following theorem shows that such a region
of “n large enough” on which the value of informa-
tion is concave always exists. This suggests that one
way to improve the quality of an allocation found
through existing methods, e.g., via LL(B) or OCBA, is
to take the allocation given by either of these exist-
ing methods, and then perform gradient ascent or a

Figure 7 Regions of Concave Value of Information for Three
Different Priors
9 -
8 Prior A

&5r
4 L
3 -
2 L
1 L
worc
0 ) . . N
0 2 4 6 8
ng

Notes. For a given prior (A, B, or C), the value of information is concave in
the region above and to the right of the corresponding line. Prior A is p =
[1,1,0], ¢ =[0,0.005, 0.5]; Prior B is u =[1,1.3,1.3], 0> =[0,0.1,0.1];
and Prior Gis p=1[1,1.3,1], ¢>=[0,0.1,0.1]. In all cases, A =1.
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second-order convex optimization method. If both the
starting allocation and the global maximum lie within
this concave region, as seems likely when the mea-
surement budget is large, then this technique will find
the globally optimal allocation. If not, it may still lead
to better allocations.

THEOREM 2. There exists an N* € R such that v is
concave on the region {n € RM: n; > Ny Vi}.

7. The Sequential Case

Previously we considered the nonconcavity of the
value of information for single-stage sampling. Now
we consider the implications of this nonconcavity
for fully sequential policies, and in particular for a
myopic fully sequential sampling policy known as
the (R1, ..., R1) policy (Gupta and Miescke 1996) and
analyzed further in Frazier et al. (2008), where it is
called the KG policy.

A fully sequential policy is one in which the allo-
cation of each measurement is decided separately.
Moreover, each decision is based upon the results of
all previous measurements. Thus, a sequential pol-
icy may use the information collected so far to hone
later measurement decisions, and so we may measure
more efficiently with a sequential policy than we can
with the single-stage policies discussed so far. In par-
ticular, many good sequential policies use early mea-
surements to roughly identify which alternatives are
likely to be the best and then focus later effort on
these alternatives to discern the best alternative from
those that are merely good.

In the sequential setting, the value of a measurement
depends upon the measurements that will be taken in
the future. Such values may be calculated, at least in
theory, through dynamic programming, although the
computational challenge of computing them for all but
the smallest problems currently seem insurmountable.
The details of such a dynamic programming formula-
tion may be found in Frazier et al. (2008).

Because of the difficulty of computing the value
of information in the sequential setting, a number
of sequential policies make decisions based upon
the value of information for single-stage allocations.
These policies include the KG policy and the LL(S)
policy of Chick and Inoue (2001). The single-stage
value of an allocation n is the v(n) defined earlier,

where the prior is replaced by the current posterior
belief. Of course, the value of information for single-
stage allocations is only an approximation to the value
of information for sequential sampling, and so poli-
cies that maximize the single-stage value of informa-
tion with each allocation are not optimal overall.

In this section, to match the usage of sequential
policies, the value v(n) of an allocation n € Zf will
be computed under the current posterior rather than
under the prior; that is,

o(n) =, [miax E[6,]Y, n] ‘ n] —maxE[6],  (7)

where t is the number of measurements observed so
far, and E, is the conditional expectation with respect
to these observations. Thus, v(n) is implicitly a func-
tion of the information collected so far, but we sup-
press this dependence in the notation.

7.1. KG and KG(x) Policies
As described above, several sequential policies use
the single-stage value of information v to make alloca-
tion decisions, including the KG policy. The KG policy
is defined as the policy that measures, at each point in
time, the alternative arg max, v(e,). The quantity v(e,)
is called the KG factor, and the motivation for the KG
policy is that a measurement’s KG factor, which is its
single-stage value, approximates its sequential value.
The KG policy is optimal when only a single mea-
surement remains in the budget (N = 1). The previ-
ous discussion, however, establishes that the optimal
single-stage allocation may vary greatly depending
on the budget, and the best alternatives to measure
when the budget is small may be far from best when
the budget is large. Thus, it is natural to be con-
cerned about problems induced in the KG policy by
this effect. From a convergence result in Frazier et al.
(2008), we can be sure that the effect is not severe
enough to prevent convergence to the best alterna-
tive given large enough N, but we may be concerned
about performance at intermediate values of N.
Observe that v(me,)/m is the average benefit per
measurement obtained by measuring alternative x a
total of m times. One fundamental problem encoun-
tered by the KG policy is that the KG factor, which is
v(e,), may be many orders of magnitude smaller than
the average benefit of some larger number of mea-
surements. This can mislead the policy into making
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poor decisions, particularly when some alternatives
have this scaling problem and others do not.

With these considerations in mind, we propose a
policy based upon the KG policy that considers the
value of multiple measurements of the same alterna-
tive. We call this policy KG(x). The value of measur-
ing an alternative is approximated by the best average
value that can be obtained from measuring it a fixed
number of times.

v(me,)

x" € argmax max . (8)
X 1<m<N-n m

We call the quantity max,_,.y_,(v(me,)/m) the KG(x)
factor. This maximum may either be taken over the
integers {1,..., N —n} or over the entire continuous
interval [1, N — n].

The KG(x) policy first appeared in Chick and Frazier
(2009a, b), where it was described briefly and used in
a numerical study. The current article describes and
justifies this policy in a more complete way.

The KG(x) policy is related to the BVI, recently
introduced in Tolpin and Shimony (2009). The BVI
is designed for settings where each measurement has
an explicit cost, and so adding measurements can
actually decrease net value. In such settings, the BVI
of an alternative is defined to be the maximum total
value over all possible batches of measurements of
that alternative. In contrast, the KG(x) factor is the
maximum average value per measurement, and can be
applied in settings like the one considered here where
measurements are limited in quantity but do not have
an explicit cost comparable with the values of the
alternatives. Later in this section we discuss an exten-
sion of KG(x) to the cost-based setting.

The following theorem shows that the KG(x) policy
retains the theoretical guarantees of the KG policy of
optimality at N =1 and N = co shown in Frazier et al.
(2008), and in §7.3 we see that it improves upon the
KG policy’s performance at other values of N.

THEOREM 3. The sequential value of the KG(x) policy is
equal to that of the optimal sequential policy when N =1,
and also in the limit as N — oo.

The statement that the KG(x) policy and the
optimal sequential policy have asymptotically equal
values in the limit as N — oo is equivalent to the
statement that, as the number of measurements grows

large, we discover and implement the best alterna-
tive with probability under the prior growing to 1. In
Frazier and Powell (2009) this is known as “conver-
gence to a global optimum.”

The effect of considering this best average value
measuring a single alternative is to smooth the non-
concavity in the value of measurement. It allows the
policy to value an alternative according to our ability
to measure it within the budget, rather than myopi-
cally assuming this budget is 1. This valuation is still
only an approximation to the true sequential value of
information computed using the fact that the policy
may behave in a fully sequential way. Nevertheless it
is a better approximation than the KG policy, avoid-
ing some problems caused by the nonconcavity of the
value of information.

Although we consider settings where measure-
ments are limited but do not carry an explicit cost,
one could apply the KG(x) idea to other settings. If
each measurement has a cost c,, the value v(me,) of
m measurements of alternative x becomes —mc, +
v(me,), and the average net value per measurement is
—c,+ov(me,)/m. A natural generalization of the KG(x)
factor for alternative x is then max,_,y_,[—c, +
v(me,)/m]. Because ¢, does not depend on m, this
quantity is simply the (cost-free) KG(x) factor minus
the cost c,. Despite this possibility for generaliza-
tion, we remain focused on the cost-free limited-
measurement case.

Figure 8 illustrates the KG(x) policy. The situation
pictured is one with three alternatives, where the first
alternative has w, = —1, 0y = 1.1; the second alter-
native has u, =0, 0, = 0.003; and the third alterna-
tive has a known value of 0. A sampling variance of
A =10 is common across the alternatives. The solid
line without circles (henceforth called the “solid line”)
shows the single-stage value of sampling from the
first alternative as a function of the number of sam-
ples taken, whereas the solid line with circles (the
“circled line”) shows this value for sampling from the
second alternative. The dotted line starts at the origin
and is tangent to the solid line. The right panel is a
magnification of the left panel.

The decision of the KG policy is given by the
value of a single sample allocated to a single alter-
native. This quantity is seen in the right panel as
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Figure 8 The Value of Information for Single-Stage Sampling as a Function of the Number of Measurements
(a) (b) Magnification of (a)
x 1078
0.06 T T 2.0 T -
--- Tangent to v(n,e,)
0.05 | — v(ney)
—o— V(ny&,) 15
0.04
] E
= 0.03 210
> >
0.02 V4
) 05
0.01 ’
0 ~ © 4 e 0
0 5 10 15 20 25 0 0.5 1.0 1.5 2.0
nX nX
Notes. There are three alternatives: u, = —1, 0y =1.1; u, =0, 0, = 0.003; p; =0, o, = 0. The sampling variance is A = 10. Solid lines without and with

circles show the value of sampling from alternatives 1 and 2, respectively. The dotted line is tangent to the solid line without circles and illustrates the KG(x)

value of sampling from alternative 1.

the solid and circled lines at n, =1. Because the cir-
cled line (corresponding to alternative 2) is higher
than the solid line at n, =1, the KG policy mea-
sures the second alternative. It does so despite the fact
that the left panel shows that much more value can
be obtained from repeated measurements of alterna-
tive 1 than from alternative 2. Indeed, with a minis-
cule variance of 0.003, measuring this alternative is
worth very little—25 measurements allocated in a sin-
gle stage provide an expected value of less than 0.002,
whereas the left panel shows that 25 measurements of
the other unknown alternative provide a value that is
30 times larger.

The KG(x*) factor may be computed from the dot-
ted line, which begins at the origin and lies tangent
to the v(n,) curve. Observe that the slope of a line
that begins at the origin and intersects v(n,) at a point
n, =m is v(m)/m. Because the dotted line is tangent
to v(n,), its slope is highest among all such lines inter-
secting v(n,), and so is equal to max,.q(v(m)/m). If
the point of intersection is between 1 and N, as it is
for the dotted line in Figure 8, then its slope is the
KG(x) factor evaluated over a continuous rather than
discrete range. Furthermore, the value of the dotted
line at n, =1 is its slope, and so the KG(x) factor
for alternative 2 is given by the dotted line at n, =1.
This parallels the KG factor for alternative 2, which is
equal to the solid line at n, =1.

In contrast to the solid line, the circled line is con-
cave (as implied by Corollary 1 and w, = max, u,),

and the KG(x) factor for this alternative is the same as
the KG factor. From this, we see that the KG(x) policy
measures the first alternative, which is clearly a better
decision than the KG policy’s decision to measure the
second. We revisit a similar example later in §7.3.
Observe that the curve resulting from following
the dotted line up to the point of intersection, and
the solid line afterward, is concave. Furthermore, it
is the concave envelope of the value of information
curve. With this understanding, we see that the KG(x)
policy chooses measurements to maximize a “concav-
ified” version of the value of measurement. As in the
case with the solid line, if a single measurement has
very little value on its own, but repeated measure-
ment will have significant value, then the KG(x) factor
captures this fact. It does so by dividing the even-
tually significant value that may be obtained among
the number of measurements necessary to obtain it,
crediting each measurement with the portion that it
contributes to the whole. On the other hand, if a sin-
gle measurement already puts us in the region where
the value of measurement is concave, then the KG(x)
factor is the same as the KG factor. Also observe
that if the remaining budget is so small that it pre-
vents us from reaching what would otherwise be the
tangent point (the number of measurements giving
the largest average value per measurement), then the
KG(x) factor gives only the best average value per
measurement obtainable with the remaining budget.
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In particular, when N =1, the KG(x) policy is the
same as the KG policy.

Although the KG(x) policy addresses the noncon-
cavity of the value of information and the problems
it causes for the KG policy, the KG(x) factors it uses
remain only approximations to the value of informa-
tion for sequential sampling. They ignore that one
may sample more than one alternative in the future,
and also that future decisions of how many times
to sample an alternative may be made sequentially
rather than in a single stage. Nevertheless, §7.3 shows
that it significantly outperforms the KG policy in
some cases, which is significant because the KG policy
performed well when compared to other fully sequen-
tial policies in an empirical study (Frazier et al. 2008).

7.2. Computing the KG(x) Policy

To compute the KG(x) policy, we need to find the
maximum in (8). This is facilitated by the follow-
ing result. The lower bound m from this result was
derived as an approximation, but not shown to be a
lower bound, in Chick and Frazier (2009b).

ProrosiTioN 4. If A, =0, then m — v(me,)/m is
strictly decreasing on R, . If A, #0, then m — v(me,)/m
is strictly unimodal over R, and its unique maximum m*
satisfies m < m* < in, where

m= <—1+r+\/1+6r+r2),

402
n‘a:ﬁ(1+r+\/1+10r+r2)
402 ’

— A2/ g2
and where r = A%/}

This proposition has the following immediate con-
sequences for solutions to the constrained opti-
mization problems argmax,,_, \_,(v(me,)/m) and
argmax,, ., y_p (v(me,)/m).

e If N—n<m, then

v(me,)
m

v(me,) CN—n

arg max
m=1,...,N—n

= argmax
me[l, N—n] m

e If A,=0or 1>im, then

v(me,)
m

v(me,) _

arg max 1.

m=1,..,N—n

= argmax
me[l, N—n] m

e Otherwise,

arg max max(1, m), min(N —n, in)],

m=1,..,N—n

Zl(ﬂnifx) e[

v(me
arg max olme,)
me[1l, N—n] m

€ {max(1, floor(m)), ..., min(N — n, ceil(im))}.

In the last case, we have several options. In the
integer-constrained optimization problem, we may
simply evaluate the objective function at each inte-
ger in the range. Or, in both the integer-constrained
and continuous problems, we may find m* numer-
ically using a line search on the strictly decreasing
function h defined in the proof of Proposition 4. This
function h has its only root at m*. The value of m*
then immediately provides the solution to either con-
strained optimization problem. Or, one may simply
approximate the solution, for example, by taking the
average of the upper and lower bounds m and 7.
In practice, such an approximation is computationally
convenient and seems to cause little degradation in
performance.

7.3. Computational Experiments

It is instructive to compare the decisions made by KG
and KG(x) policies on a simple problem. Consider
three alternatives, where one is known perfectly, a
great deal is known about another, and less is known
about the last alternative. Furthermore, suppose that
the two well-known alternatives are equal in value,
whereas we estimate the last alternative to be worse.
This example may be written as o, =0, 0, ~0, 03 > 0,
p1 =0, py =0, uz <0.

In this problem, because alternative 1 is perfectly
known, there is no value in measuring it. The ques-
tion we then face is whether to measure alternative 2
or 3. The value of measuring alternative 2 is quite low
because it has a very low variance—even though mea-
suring it may reveal it to be better than alternative 1,
the amount by which it may improve upon alterna-
tive 1 is very likely to be small. In contrast, if o3 is
large enough, and if u; is not too small, then alterna-
tive 3 may be significantly better than both alterna-
tives 1 and 2, and there may be significant value in
measuring it. Furthermore, for larger values of either
W or o, there is a greater potential for discovering
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Figure 9 Comparison of KG and KG(«) for a Problem with Three Measurement Choices

(a)
25

---KG
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Notes. Panel (a) shows measurement decisions of KG and KG(x) for u = [0, 0, u3], ¢ =[0, 1072, ¢3], and A = 100. The region above each algorithm’s curve
contains those values of u, and o3 for which the algorithm measures alternative 3. The region below contains those values for which the algorithm measures
alternative 2. Panel (b) shows the opportunity cost versus the number of iterations for KG and KG(x) for p =1[0,0, —1], ¢ =[0, 1072, 4/2], and A = 100. The

average opportunity cost over 1,000 independent runs is plotted. Opportunity cost at time n is max; 6; — 6,

substantial value in alternative 3, and measuring it
should have greater value.

In Figure 9(a) we fix 0, = 107% and u, = 0 and exam-
ine the decisions of the KG and KG(x) policies as a
function of u; and o3. For each policy, a curve is plot-
ted, and the region above and to the right contains
those priors for which the policy measures alterna-
tive 3 first. Below and to the left of each curve are
those priors for which alternative 3 is less attractive,
and the policy instead measures alternative 2.

The figure shows that KG(x) is more willing than
KG to measure alternative 3, the alternative with large
variance. Indeed, the KG policy’s tendency to mea-
sure alternative 2 seems extreme and counterproduc-
tive. Even if we were to learn its value perfectly, we
would only obtain a reward of

E[max(6;, 6,)] = E[max(0, 6,)]

o, f (o] 0,)
a,£(0)

1
-2 ~
=10 N ~(0.004.

In reality, the reward resulting from measuring alter-
native 2 is even smaller because of measurement
noise, and because later measurements of alterna-
tive 3 may reveal it to be better than either alterna-
tive 2 or alternative 1.

rgmax; #7'

Contrasting the low value of measuring alterna-
tive 2, the ultimate value of measuring alternative 3
can be quite large. For example, consider the case
us=—1and o; = +/2. In this case, learning the value
of alternative 3 perfectly (without learning about
alternative 2) has value

E[max(0, 05)] = o5 f (/) = V2f (—=1/+/2) 2 0.2.

This value is nearly two orders of magnitude larger
than the value of learning alternative 2 perfectly. Yet,
the KG policy chooses to measure alternative 2.

Of course, one does not learn the value of an alter-
native perfectly when one measures it. In the calcu-
lation behind the KG policy, we assume that only
one measurement will be allowed, and under this
assumption measuring alternative 2 is best. This is
because of the nonconcavity induced by the large
measurement variance (A = 100). Contrasting the
myopically optimal action, if the budget is sufficiently
large, it is prudent to first measure alternative 3 sev-
eral times to determine whether its value is signifi-
cantly better than 0 (the true value of alternative 1,
and the initial estimate of the value of alterna-
tive 2), and then later, if sufficient budget remains,
go back and learn more about alternative 2. It is in
learning about alternative 3 that the most significant
benefits are to be found.
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Figure 9(a) shows the performance of the KG and
KG(x) policies when u; = —1 and o5 = +/2. The aver-
age opportunity cost over 1,000 independent simula-
tions of the two policies is plotted, where opportunity
cost at a time # is the difference in value between the
best decision that can be made with perfect informa-
tion and the best decision that can be made with the
available information. This opportunity cost is written
max; 0; — 0,5 may, e

The KG policy measures alternative 2 through
every iteration pictured, from 1 to 1,000. Thus, it
reduces its opportunity cost by a small amount when
6, > 0,, but it misses the large benefit of learning
about alternative 3. Eventually, under the KG policy,
the variance of our belief about alternative 2 shrinks
enough that we measure alternative 3, but in this
example, the measurement budget ends before this
eventuality is reached. In contrast, the KG(x) policy
measures alternative 3 immediately, and sees a large
reduction in opportunity cost as it learns whether 6,
or 6, is better.

8. Conclusion

Managers realize intuitively that it is typically the case
that they cannot evaluate all alternatives when faced
with a decision. Often referred to as “analysis paral-
ysis,” they realize that they have to do a good job
with a reasonable set of choices. We revisit the non-
concavity property in the value of information, itself
a surprising behavior for many, and investigate its
implications in terms of determining how to allocate
limited resources for collecting information. In par-
ticular, we show that there is an optimal number of
choices which depends on the measurement budget
and the level of uncertainty in a measurement.

An effective policy for determining how to col-
lect information sequentially is one that maximizes
the expected value of a single measurement, some-
times referred to as the knowledge gradient policy. We
show, however, that such a policy can perform very
poorly in the presence of nonconcavity in the value
of information. As an alternative, we introduce the
KG(x) policy, which chooses to measure the alterna-
tive which offers the highest average value when we
are allowed to observe an alternative multiple times.
This policy overcomes a major limitation of the orig-
inal knowledge gradient policy for problems where a

single observation is noisy and yields limited infor-
mation. The KG(x) policy is effectively allowing us to
pay for a more precise measurement.
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Appendix. Proofs

Derivative Expressions
The following lemmas give explicit expressions for the first
and second derivatives of ¢; and g needed in other proofs.

LeEMMA 2. The first and second derivatives of ; are given by

~ A apf A e
‘Ti(”i)=§”i ! (; +”i) ,
i i

- A anf A S
0{’(ni)=—4—;ni S/Z(U—;+ni> (U—’z +4ni>.
1 1 1

The second derivative is negative, and so 0; is concave.

Proor. Define r = A;/a?. Then &;(n;) = \/o?n;/(r +n;).

We compute the first derivative as

n

“12
. r or —12
d ] = (n;(r+n,)*) 2

5(n) = 0,5
g ) =0 = =
A 20 r+n (r+n)? 2

We compute the second derivative from the first deriva-

tive as

~ g;r 1 —3/2

571 = | = 500040 [0 45 )
or  r+4n;

40 (r )

(2529] oo

PR PY0)

LEmMMA 3.

ifs=0and p; = max L,
£
0 otherwise,
where W = max;; u; + stj.

Proor. We first calculate the right partial derivative of g
with respect to s;. If the limit exists, this right partial deriva-
tive is

o 8 +ee) —g()
e—0t €

atg
B—SI(S) =

= limE
e—0t1

[max(l’«i +(si+€)Z;, W) —max(u; +s,.Z;, W):|
" .
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Because |max(a,c)—max(b,c)| <|a—b|fora,b, ceR, the term
inside the expectation is dominated by |(s;+€)Z; —s,Z;|/e =
|Z;|, which is integrable. Thus, by the dominated conver-
gence theorem, the limit and expectation may be inter-
changed, and

aJr_g(S) = lim g(s—i—eei)—g(s)
ds;

e—0t €

o+
= [E[g max(u; +5;Z;, W)]

1

= [E[Zill#i+5izi>wl +Zi+1{ﬂ-i+5izi=w}]'

Thus, (97 g/ds;)(s) exists and is given by this expression.

We now consider two cases, s; =0 and s; # 0. First,
consider the case s; = 0. In this case, the right derivative
(0*g/9s;)(s) is equal to the derivative (dg/ds;)(s) because
s; is at the left edge of the domain RY of g. Furthermore,
E[Z1,, 152wy = E[Z1), o wy] = E[Z;]P{; > W} =0, where
the first equality follows by substituting s; =0, the second
equality follows from the independence of Z; and W, and
the third equality follows from E[Z;] =0. Thus,

d "
f(s) = a_f(s) = E[Z L h5z,-m)]

0 if s;,=0, s#0,
= 1

o Hw=w)

where we have used P{u; + s;Z; = W} =P{u, = W} =0

to show the expression for s; =0, s # 0, and the fact

that 1y, o7 -wy =1 {=max;i ;) is deterministic together with

E[Z}]= ¢ (0) =1/+/27 (from Remark 1) to show the expres-

sion for s =0. This shows the lemma for the case s; =0.
We now consider the case s; > 0. In this case,

if s=0,

P{u; +sZ,=W}=0 and
ot

i (s) = [E[Zillﬂi+5izi>wl]'
ds;

Then an argument similar to the one above, in which inte-
grability is shown and then the dominated convergence the-
orem applied, shows

-y a~

—=(s) = E| — i+s.Z;, W

89 = B o max(u + 52, W]
= [E[Zillm+5izi>Wl +Zi—1{#i+5izi=W)]
=E[Z1, 457w,

where the last equality follows from P{u; + s;Z; = W} =0.
The equality of left and right derivatives implies their equal-

ity with (dg/ds;)(s).

Applying the tower property provides
ad
28(6) = E[ELZ 1y 020w | WI]
= E[E[ZiL 7~ vy | W]

(2]

where the last equality follows from Remark 1. This shows
the lemma for the case s; >0. O

LEMMA 4. For s#0and i #j,
g W —u, W—p
—:[E 7
s? [( s? )go( 5; )]

azg _W+I—L,‘ W—/,Ll
ds;ds; - |:< 5i >¢ < S; ) Zfl{“fﬂfzjiw/}] ’

where W = man# M =+ Ska Lli’ld W/ = man#,j M + Ska. Pur—
thermore, these derivatives are continuous in s for all s # 0. Thus,
Vg(s) and V?g(s) exist and are continuous at all s #0.

PrOOF. Let s # 0. We first show the claimed expression
for 9?g/ds?. By Lemma 3,

g d W —u,

w el (5)]
—ime [ (e () e (1)) @
u—si | U—s; u S;

Consider the open ball B = (s;/2, 3s;/2) containing s;. We
now bound over u € B the expression inside the expectation
in (9). For all u € B,

1 W —p, W—p,;
¢ - ¢
|u—s| u s;
d W—,U«i)l W —pu,
<su —(p( < ¢ (0),
u’eI; au’ w (u/)?’ ( )

where we note that (9/0u’)e (W —u;)/u') = (W — u;)/
()*) e (W — p;)/1). This bound is integrable, and so by
the dominated convergence theorem we may exchange the
limit and expectation in (9) to obtain

P 3 (W—p, W (W—p,

_§=|E|:_(P( Ml)}zﬂz[ 3Ml¢< Ml)],

ds; ds; S; s; S;
which is the claimed expression for 9%g/ds?.

We now show the claimed expression for d°g/ds;ds;. By
Lemma 3,

+ + — L.
6_(6_8> - G_[E[¢ (W_#>]
aS]‘ 3Si 3S] Si
.1 We — i W —p
Hembi) _ (M =m 1
i () o (F5)) o

where W, = max{max; ; iy +5cZ¢, pj + (s; + €)Z;}.

I
=
3
|
-
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For any a >0 and € € (0, a),

(We’_/"l‘i> <W—Mi>
¢ —¢
S; 5

1

E/

— o /X
de S;

W.—pu
< sup Wemtiliz100)
€c(0,a) 5

< sup
ec(0,a)

= (W—wil+alZ;)IZ;|e©)/s;,

where we have used

a+ We_l’l’i _ _We+/‘1’i We_l'l’i 71
EQD S: - S: @ S; j {p,]-+(s]-+e)ijW’}'

The bound (W — u;| +4a|Z;|)|Z;|¢ (0) /s; on the integrand
of (10) is integrable, and so by the dominated convergence
theorem we may exchange the limit and expectation to
rewrite (10) as

+ N -
S(%)=¢ [g(uﬂ
ds; \ 9s; ds; 5
= _W+H’i 144 — M
- [< Si >¢< S; )Zjl{“i“fzfzw'}} '

Using a similar argument, in which we use the dom-
inated convergence theorem to exchange a limit with an
integral, we may calculate the left derivative as

_ " o
3_(8_8) —e| 2, (W_f'«)
ds; \ ds; ds; S;
_ W+, W —u,
=t |:< 5; >¢( 5; Zil{szi>w) |-

The only difference is that the inequality in the indicator
function is now strict, because the corresponding expres-
sion for (3~ /de)e (W, — u;)/s;) has a strict inequality in the
indicator function.

Then, s #0 implies P{u; +s5,Z; = W'} =0, and

at (ag\ 9 (dg
ds;\ds; ) 9s; \9s;
= _W+M‘i W—,u,i
_[E[( Si >¢< Si )Zjl{“i+5fzizw'}]'

The left and right derivatives agree, and so are equal to the
derivative 9*g/ds;ds;.

We now show continuity of 9°¢/ds} and 9°g/ds;ds;. For
ueRM, let

W, =maxp;, +u,Z, and W, =maxpu; + u;Z.
[ kA, ]

First, consider 3°¢/ds?. We have

: aZg : Wu — M Wu — M
i G 0 = e (52 ) (2 |
— Fllim W, —u, W, — i
I =1 R L G ’
W—w; W —u; &g
=F [ < B
(5 (7 o

where the exchange of limit and expectation follows from
the dominated convergence theorem and the following inte-
grable bound satisfied by all u within an e-ball of s, with
e<s,

‘(Wu_”’i) (Wu_“’i)‘
3 (3
uj u;

IA

Wu_ i
‘ 3“‘90(0)
u;

- [W — ;| + emaxg; | Zy|
B (si —€)®

¢ (0).
Now consider §*g/ds;ds;. We have

62
lim -8 (u)
u=s ds;0s;

=1i AR W, —w;

e[ (B
= : _Wu + M W, — u;

~eim( e () 2o
= AR W —uw;

- [( Si )(P ( S ) Zjl{#f+5fzjzwl}i|

where the exchange of limit and expectation follows from
the dominated convergence theorem, and the following
integrable bound is satisfied by all # within an e-ball of s,
with € <s;,

_Wu + Mi Wu — M
‘ < U; >¢ ( u; Zjl{%ﬂjzfzw“

< _Wu + M
= —u‘

1

0 (0)[z

|[=W + ;| + emax;; | Z|
< e (0)[7].
s;—€
In taking the limit, we have also noted that the event
{nj + sZ; = W'} has probability 0, and so the event
lim } has probability 1. O

U—s l{uj+u]~Z/ZW,ﬁ} {;Lj+SjZ]‘ZW’
Proof of Proposition 1

First, recall that v(n;e;) = g(0;(n;)e;). Thus, to show the
claimed expressions for v(m;e;) and its derivative, it is
enough to provide expressions for g(se;) and its derivative.

For s > 0, by Lemma 3,

d o maXipi— i\ (A
asg(sez‘)—(P( S >—<P(S ,

where we have used the symmetry of ¢. This expression,
together with the chain rule, shows the claimed expression
for (3/an)v(n;e;).
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We now provide an analytic expression for g(se;). For
5s=0, g(se;) =0. For s >0,

g(se;) = E | max(pu; +57;, maxp;) | - maxu,
j# i

E[max(sZ;, —A))] if ;= max; u;,

E[max(—A; +sZ;,0)] if p; <max;p;,
= E[max(sZ;, —A))]
= E[sZ1 72y ] + E[ATL iz, 5y5]
= 5@ (—A;/5) — AP (—A/s) =sf(—A,/s).

The first equality on the third line follows from noting
that E[sZ;] = 0, which allows us to subtract sZ; from
both terms in the maximum in the second case to obtain
E[max(—4;, —sZ;)], which is equal to E[max(—A;,sZ;)]
because of the equality in distribution between Z; and —Z;.
The first equality on the fourth line uses Remark 1. Com-
bining this expression for g(se;) with v(n;e;) = g(0:(n;)e;)
shows the claimed expression for v(n;e;).

Proof of Theorem 1
Let n; > 0. By Proposition 1, (8*/dn?)v(n,e;) = (3/dn;) ! (n;) -
¢ (—A;/(7;(n;))), which can be rewritten as

92 B —A,; 1
T’ﬁv(niei) B g0(&‘(”:‘)) 7;(ny)

. I:&{’(n,)ﬁ'i(ni)+ <A 5'(("))> ] (11)

Letting = A;/0?, the expressions for the first and second
derivatives of ; from Lemma 2 in the appendix can be
rewritten as

~ ~ 0',‘2” —1 -3

0; (ni)Ui(”i):—T”i (r+mn)~(r+4n,),
o ro_ _
O'i(”i)/a'i(”i)=§”il(r+"i) L

This allows us to evaluate the term in the square brackets
in (11) as
A (n)\*
a;(n;)

= Zni’z(r + 1) [—4oin} + (A — af)n; + AT

ol (n;)a;(n;) + (

The quadratic expression —4g?n? + r(A? — 0?)n; + A?r? has

two roots,

.
o [Ai —o?x (a2 o2+ 1603A§]

SrZ[A oF £ /Al + 140702 1 0],

call them n, and n_, where n, is the larger of the two.
Note that n_ <0 < n,, where the strict inequality n_ <0 is

implied by o7 > 0. Then writing the quadratic as (n; —n,)-
(n; —n_), we have
2

asoOne)=g(=05 ) = {2 ) =)=,

Because all the terms except (1n; —n,) are strictly positive
for nonnegative n;, n; = v(n;e;) is convex on (0,n,] and
concave on [n,, o). The theorem follows from setting n,
equal to n,.

Proof of Proposition 2
Before proving Proposition 2, we state and prove the fol-
lowing lemma.

LEMMA 5. For A e R, and any alternative i, the function

n;,z+ ¢(z) max(O, T +z)

is log-concave on R, x R, where log(0) is understood to be —oo
Proor. First,

if 0,
x > log(max(0, x)) = zf i i 0

{[—2pt] log(x)

is concave and nondecreasing.

Also, because n; — G;(n;) is concave (by Lemma 2) and
strictly positive when n; > 0, we have that n; — —A/0;(n;)
is concave on R, and that

n;r— o;(n;) >0,
[—2pt] —oo if 1, <0

is concave on R. Because the sum of two concave functions
is concave,

o-(n)+z if n; >0,

[—2pt] -

is concave on R?. Thus, by the composition rules for concave
functions (Boyd and Vandenberghe 2004),

A
I S if n.
og(max(O, &) —|—z>> if n; >0,

—00 if n; <0

n;,zH>
if n; <0

n;,zH>

is concave on R? and hence also on R, xR. O

We now prove Proposition 2.

Proor or ProrositioN 2. From the definition of v, (2),
we have that

v(ne;) = [E[max(l’«i +0:(n)Z;, max Mj)]/ (12)

where Z,; is a standard normal random variable. Letting A =
|w; —max;; pj|, we will see by considering two cases that

o(ne;) = E[max(0, —A + G,(1n,)Z,)]. (13)
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In the first case, suppose p; < max;,;u;, and then (13)
follows from (12) when we bring max; ; = max;; u; inside
the expectation, and then inside both arguments of the inner
maximum. In the second case, suppose u; > max;; u;. Then,
subtracting and adding u; + 6;(11;)Z; inside the expectation
gives

o(ne) = [E[max(o, max, — (1, + &f(ni>zi)>}
] 1
+E[p; +61(n,)Z;] — maxp;
]

= E[max(0, —A — &;(n;)Z;)]
= E[max(0, —A + &,(n,)Z;)],

where in the second line we use that E[0;(n;)Z;] =0 and
that p; —max; u; =0, and in the third line we use that Z; is
equal in distribution to —Z;. This shows (13).

Proceeding from (13), we have

v(n;e;) = &'i(n,»)[E[max (0, #ﬁi) + Z,)].

The concavity of G; shown in Lemma 2 implies that n; —
log(a;(n;)) is also concave (Boyd and Vandenberghe 2004),
and because

log(v(n;e;)) =log(a;) + 10g<[E[max(0, 5;%2) + Zi)]) ’

it is sufficient to show concavity on R, of

n; — log<[E|:max<0, % +Z,)i|).

To show this, we begin with the log-concavity on R, x R
of
n;,z > (z)max(O -4 +z)
ir ¢ 7 T~ 7 N 7
a;(n;)

as shown in Lemma 5. This implies that

[E[max(O, #i) + Zz-)] = /R o(2) max(O, &i_(—i) +z> dz

is log-concave in n; as the integral over R of a function
that is log-concave in n; and the integrand z (Boyd and
Vandenberghe 2004). O

Proof of Proposition 3

Let A={neR¥: ¥ n; < N} be the feasible set, and let
u* =max,., u(n). Because u is continuous and A is compact,
there exists a point n € A attaining the maximum.

Let n € A be a point attaining the maximum, so u(n) = u*,
and define a point ' by nj =n; + M - ;n; and n; =n;
for i > 1. Then ) ;n; = M, and the fact that u is nonde-
creasing implies that u(n’) > u(n) = u*. We have shown that
there is a point n’ € A attaining the maximum whose com-
ponents sum to M. Let B be the set of all such points, i.e.,

B={ne A: u(n)=u*, Y ;n; = M}. We have shown that B is
nonempty.

For any point n € B, let d(n) be the number of com-
ponents n; equal to N/M. We will show that there
exists a point n* € B with d(n*) = M. This point must be
(N/M, ...,N/M), and its membership in B will show that
it attains the maximum.

Let n be a point in B. If d(n) = M, then the proof is com-
plete. Otherwise, d(n) < M, and we will show that there
exists another point n' € B with d(n’) > d(n) + 1. Repeated
application of this inequality and the finiteness of M will
then imply the existence of a point n* in B with d(n*) =M,
completing the proof.

Suppose d(n) < M for some n € B. Let j € argmax; n; and
k € argmin, n;. Because d(n) # M and ) ;n; = M, we must
have n; > N/M and n, < N/M. Define a point n’ by n; =n,
for each i # j, k and nj=mny, n; =n;, so n' is identical to n
except that components j and k are switched. By symmetry
of u we have u(n) = u(n') = u*. Also, > ;n;=>;n,=M,
so n’' € B.

Let A= (N/M—mny)/(n;—mny). This quantity is strictly pos-
itive and finite because N/M > n; and n; > 1, and is strictly
less than 1 because N/M < n;. Thus, A € (0, 1). Define n" =
An+(1—A)n'. Concavity of u implies u(n”) > Au(n)+(1—A)-
u(n') = Au* 4+ (1 — Nu* = u*. Thus, n” attains the maxi-
mum. Additionally, n” € RY, and > ;n/ =A(X;n;) +(1—A) -
(>-;n)=M. Thus, n” €B.

We have n} = n; for each i # j, k. Because neither n; nor
n, is equal to N/M, this implies that for each component
ie{l,..., M} with n; = N/M, we also have n/ = N/M. Fur-
thermore, n/ = An; + (1 = \)n; = An; + (1 — Mn = [(N/M —
m)/(n; — n)|(n; — mg) +m = N/M. Thus, d(n”) > d(n) + 1.

Proof of Lemma 1

Without loss of generality we may assume that max; u; = u,.
If this is not the case we may simply rename the indices.
Adding and subtracting u, + 6,(1,)Z, to (4) provides

o(n) = E[maxp; + &(1)Z;] - 1,

= E[(uy — po + 61 (1) Zy = 55(12)Z,) "]
+E[py + 02(n2) 2] — 1y
= E[(1 — o + 61 (1) Z1 — 52(15)Z,) .
Now, Z; and Z, are independent standard normal random
variables, and so ¢,(1,)Z; — G,(n,)Z, is also normal with

mean 0 and variance 62(1;) + 2(n,) = s2(n), and so is equal
in distribution to s(n)Z. Thus,

o(n) = E[(t1 — ua +5()2)"]

(52|

= son (i),

where we recall from Proposition 1 that E[(c + Z)*] = f(c)
for ceR.
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Proof of Proposition 4

Before proving Proposition 4, we state two lemmas. The first
lemma defines a new quantity, called Mill’s ratio (Ruben
1963), which is the ratio R(z) = ®(—z)/¢(z). The proof of
this first lemma is due to Laplace (1820).

LemMma 6 (LarLAck 1820). Mill’s ratio, R(z) =
¢(z2), is bounded above and below by

®(-2)/

(22 +2)/(z® +32) < R(2) < z/(z* +1).

Proor. The proof is due to Laplace (1820), as described
in Ruben (1963). O

LemMA 7. f(—z)/¢(z) is strictly decreasing in z, and

f(=2)
)

Proor. We begin by noting that the derivative of Mill’s
ratio may be written as

(2+3)7' < < (2417

I B(z) (2t 2b(~2)e(z)
P e I (2P

R o) N

= T4z 2= —14+2R(E).

Using this expression, we may differentiate f(—z)/¢(z) as

I f(=2) 9

—R(z2) —z%R(z)

—R(z)(1+2%) +z,

which is strictly negative by the inequality R(z) > z/(z* + 1)
from Lemma 6. This shows that z — f(—z)/¢(z) is strictly
decreasing.

Then, to show the bounds on f(—z)/¢(z) =1—zR(z), we
use the bounds on R(z) from Lemma 6 to write

f(=2)/e(@)>1-z[z/(Z + D] =1/(2 +1),
f(=2)/e(x) <1-2[(z +2)/(z +32)] = 1/( +3). O
We are now ready to prove Proposition 4.

Proor of ProrosiTioN 4. First consider the case A, =0.
In this case,

2
1 oim

- _ 11
U(mex)/mZO'x(m)f(O)/m - mm (/\x/o.f)_,’_m

oy 1
V2 (N Jomt

This is a strictly decreasing function of m. This shows the
result for the case A, =0.

Now consider the case A, > 0. Differentiating v(me,)/m
with respect to m at m > 0 provides

d v(me,)
om m

1 1 0
= —Wv(mex) + a%v(mex)

1 1 A,
= —m—v(mex) + —a/(m)e < -(m))
a,.(m)

—5 G (m )f( x(m)) . (&:(Amx)>%m()\:+0x2m)
“’(o_(Ano) m(j (+mz)rm)

'[“"(z?:(ArZ))lf(a_(A:vo)(A voim) 3]

In the first line we have used the chain rule. In the second
line we have used Proposition 1 to differentiate v. In the
third line we have used the expression from Proposition 1
for v(m,x) and Lemma 2 to differentiate 7, (m). In the fourth
line we have rearranged terms.

Because ¢(—A,/d,(m))d,(m)/m? is strictly positive, the
sign of d/dmv(me,)/m, i.e., whether it is strictly positive,
strictly negative, or 0, is equal to the sign of the expression
inside the parentheses, which we will call h(m);

h(m)z“P(&:@z))_lf( 7o ) F g0

Because ¢(—z)7'f(—z) is strictly decreasing in z by
Lemma 7, and &, (m) is strictly increasing in m, both

() (o) =

¢<&:(Ar2>)_lf( g

are strictly increasing in m. Thus, h(m) is strictly decreas-
ing in m.

Because & is continuous on R, with lim,,_,h(m) = wa
A/2 >0 (this limit relies on A, > 0) and lim,,_,  h(m) = —
h has a unique root in R,,. Call this root m*. In addi-
tion, both h(m) and (d/dm)v(me,) are strictly positive for
m < m* and strictly negative for m < m*. Thus, m — v(m,x)
is strictly unimodal with a unique maximum at m*.

We now bound m* above and below. By Lemma 7
and (14), h(m) is bounded above by h(m, 3) and below by
h(m, 1), where h(m, a) is defined by

A+ 02m Ay

(A, /7. (m)*4+a 2~

Using the definition of o, (1), we may write (A, /0, (m))? as
(A5, (m))* +a

_ (A/02) +m ta (Azx\ /02) + (A2 + o2 a)m
oZm oZm

h(m, a) = —
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and then substitute this into the definition of h(m, a) to and (15) becomes
obtain
2
h(m, a) = (s £ oz m T
T (A2, /02) + (A2 4 g2a)ym =diag(Va(n))[ V> g (6 (n)) — diag(w(n))diag(Vg(5(n)))]
_ 20¢m? 4 A (0} (a—2)+ A)m+ (Az)tz)/(az) -diag(Va(n)).
B 2[(A3A,/09) + (AZ + oZa)m]
. Thus, to show that V?v(n) is negative semidefinite and that

Let h(m, a) = —20tm? + A (02(a—2) + A2)m + (A222) /(a2) be v is concave at n, it is sufficient to show that

the numerator of this expression so that the sign of h(m, a)
is the same as the sign of h(m, a).
This expression h(m, a) is quadratic in m and has roots

[ (02(a—2)+A%) v A2 (02(a—2) + A2)> +8A2\202] /40

XX x

For ae{1,3}, (a—2)>=1, and these roots may be written

[(a—2)+rEy/1+][2(a—2)+8]r+12] 40}

where r = AZ/07. Of these roots when a € {1, 3}, only one is
strictly positive and the other is strictly negative. Let 1, (a)
denote the strictly positive root, so

ho()=[-1+r+V1+6r+1?] /402
ho(3)=[1+r+V1+10r+1*] /402

Because

}rliir})fz(m, a)=A*X2/0?>0 and r}liir[}jz(m, a) = —oo,

h(m a) is strictly positive on [0, h +(a)) and strictly neg-
ative on (hy(a), ). Furthermore, h(m) < h(m,3) and
sgn(h(m, 3)) = sgn(h(m 3)) imply h(m) <0 for m>h +(3),
which implies m* < h,(3). Similarly, h(m) > h(m, 1) and
sgn(h(m, 1)) = sgn(h(m 1)) imply h(m) >0 for m < h +(D),
which implies m* > h, (1). Thus, m* e[h (1), +(3)] O

Proof of Theorem 2
Using the chain rule, we compute the gradient and Hessian
of v as
Vo(n) = Vg (o (n)) diag(Vo (n)),
V2o(n) = diag(Va (n))V2g(6(n)) diag(Va(n))  (15)
+ V25 (n) diag(Vg(a(n))).

Consider the term V24 (n)diag(Vg(a(n))) from (15).
Because V2G(n) is a diagonal matrix with entries &7 (n;), this
term is a diagonal matrix with entries ;' (1;)dg/ds;(0(n)) =
—&!(n;)*w;(n;)0g/9s;(5(n)), where we define w;(n;) =
—&!'(n;)//(n;)*. Defining a vector w(n) = [w;(n;)];, we then
have an expression for the term in (15),

V25 () diag (Vg (#(n))) = — diag(Vé(n) diag(w(n))
. diag(Vg(&(n))) diag(V(&(n))),

H(n) = Vg (& (n)) — diag(w(n)) diag (Vg (5'(n))

is negative semidefinite.
From the expressions for ¢ and ;" in Lemma 2,

Zinf A 120\,
w(n)—)\—lnl 1/2<0_2+ni) <?+4ni).
i i i

Letting maxeig and mineig be functions that returns
the maximum and minimum eigenvalues of a matrix,
respectively, we have from the fact that maxeig(A + B) <
maxeig(A) + maxeig(B) that

maxeig(H(n)) < maxeig(V>g(d(1)))
— mineig(diag(w(n)) diag(Vg(5(n))))-

Furthermore,

mineig(diag(w(n)) diag(Vg(a(n))))

d
=min wi<ni)a—fi(&<n>).
Let B.(0) = {u € RM: |u; — 0| < €}, and let € > 0 be such
that constants b and c defined by

g
c_mm inf —()

b= i Vz 7
sup maxeig(V>g(u)) ueBe(0) 05,

ueB (o)

satisfy b < oo and c > 0, respectively. That such a strictly
positive € exists is guaranteed by the continuity of maxeig,
the continuity of V2¢ and Vg (Lemma 4), and the fact due to
Lemma 3 that Vg(o) > 0. Here, > indicates componentwise
inequality, so a > a’ means 4; > a; for each i.

Then let N € RM be such that ¢(N) € B.(g;). Such an
N exists because limy,_,,, G;(N;) = o;. For this N, we also
have ¢ (n) € B, for all n> N because ¢ is increasing in each
component. Thus, for all n = N, maxeig(V2g(6(n))) < b,
min; dg/ds;(o(n)) > ¢, and

maxeig(H (1)) < b — min cw;(n;). (16)
1
Because lim,, _,,, w;(n;) = oo for each i, there exists an N* >

N such that min; w;(n;) > b/c for all n > N*. From (16), we
then have that maxeig(H(n)) <0 for all n > N*.
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Proof of Theorem 3

Optimality at N =1 follows from noting that the decision of
the KG policy is identical to that of the KG(x) policy when
n =N — 1. The decision of the KG policy is shown to be
optimal when N =1 in Frazier et al. (2008).

To show optimality in the limit as N — oo, we first
augdment our existing notation. To indicate the depen-
dence upon the posterior distribution we write v(n; u, o)
instead of v(n) to indicate the single-stage value of the
allocation n under the posterior distribution given by
pweRM and o eRYM. We also let vXS(u, o) = v(e,; p, o)
and X% (u, o) = max; ., <n_, v(me,; u, o)/m be the KG
and KG(x) factors, respectively, for measuring alternative x.
Thus, the KG policy measures argmax, vX°(u, o), and the
KG(*) policy measures argmax, o (u, o).

We now provide upper and lower bounds on e (u, o).
By noting that m =1 is in the set of m over which the maxi-
mum in the definition of V;Ifc(*) (u, o) is taken, we obtain the
lower bound

VEG(*)(I-L/ o) > U(ex; M, 0)= V:Ifc(/"'/ 0-)'

To provide an upper bound, we note that v(me,; u, o) is
bounded above by u,(u, o) = 0, f(— |y — MaXyy phy|/T).
This can be seen by noting that s+ sf(—a/s) is increasing
in s for any a > 0, and 6, (m) < o0,. Then, letting m* be a max-
imand in the definition of V,I(( () (u, o), and noting m* >1,

VO (w, 0) = v(m*e,; w, o) /m* <v(m*e; p, ) < (w, o).

As shown in (Frazier and Powell 2009, Theorem 1 and
Lemmas 5 and 6), a sufficient condition for optimality as
N — oo is that, for each (u, o) € RM x RY satisfying o #0,
we have a corresponding set U containing (u, o) that is
open in R™ x RM and on which the policy only measures
alternatives x with o, > 0.

To show that this sufficient condition is met, we fix u €
RM and o € RM with o #0. We define A= {x: o, =0}, and

U={u, o v5W, o) > u.(w, 0') Vx ¢ A, x' € A}.

Note that U =RM x RM when A =@. We check that U sat-
isfies the sufficient conditions. First, the upper and lower
bounds for ¥X¢®) imply forallx € A, x' ¢ A, and (u', o) € U
that

KOO, o) 2 1K, o) = g ', ') 2 S, o).

Because A has a nonempty complement (although it may
be empty itself), this implies that the KG(x) policy measures
outside of A for each (u', o’) € U.

Second, the upper and lower bounds for ¥*¢®, together
with the facts v*6(u, o) =0 and u;(n, o) = 0 iff ; =0 iff
ie A, imply for all x€ A and x' ¢ A that

VESO (w, o) = v (u, o) >0,

e, 0) < V¥, o) =0.

The inequality »5°® (i, ¢) > 0 then shows v5°" (u, o) =0.
Thus, 5% (u, 0) > 0= 15 (4, o), and (i, o) € U.

Third and finally, both »X¢ and u, are continuous func-
tions, and so U is an open set. Thus, U satisfies the sufficient

conditions from Frazier and Powell (2009).
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