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1. Introduction
Consider a path-finding problem on a graph in which the
lengths or values of the edges are random and their distri-
butions are unknown. We begin with independent normal
Bayesian priors for the edge values, and we can obtain
noisy measurements of the values, which we can use to
refine our estimates through Bayesian updating. We are
allowed to make N measurements of individual edges, and
we can measure any edge at any time, regardless of its
location in the graph. After the measurements are complete,
we must make a guess as to the best path. Our problem is
to sequentially determine the best edges to evaluate, where
we can make each choice given what we have learned from
prior measurements.
This problem contains an important distinction between

measurement and implementation decisions. While we
measure, we collect information about individual edges.
However, our overarching goal is to find a path. We must
choose the edges we measure in such a way as to collect
the most information about the graph as a whole. We are
not constrained by the graph structure when choosing what
to measure, in the sense that we can always measure any
edge at any time. Nonetheless, we must still keep the graph
structure in mind when choosing edges because it is rele-
vant to the final implementation decision.
The distinction between measurement and implementa-

tion has not been considered in earlier work on optimal
learning. A major goal of this work is to open up new
avenues for optimal learning in the context of operations
research problems (e.g., on graphs). Three possible exam-
ples of graph problems where a learning component may
come into play are the following:
1. PERT/CPM project management. A complex project

can be represented as a graph in which edges correspond to
tasks. Suppose that there are multiple possible sequences of

tasks that will enable us to complete the project objectives.
Every such sequence is a path in the graph, and we wish to
find the sequence that can be completed in the shortest pos-
sible time. We can change our estimate of the time required
to complete a task by analyzing historical data from pre-
vious projects involving that task. We do not have time
to analyze all available records (they may be expensive to
access) and can only perform a small number of historical
studies.
2. Biosurveillance. We are planning a route for a single

medical specialist through a region in a developing coun-
try. The route should maximize the specialist’s total effec-
tiveness in the region. Before committing to a route, we
can make contact with hospitals in the region and ask for
recent medical data that could change our beliefs about the
specialist’s potential effectiveness there. A hospital can be
modeled as a pair of nodes connected by a single edge,
where the value of the edge is a measure of the special-
ist’s effectiveness. Each contact requires money and time
to analyze the data, so the total number of hospitals we can
visit is limited. Thus, the goal is to find the path with the
highest value given a fixed number of edges.
3. Defense of intellectual property. Certain stores may

be unwittingly selling counterfeit products such as printer
ink. The ink manufacturer has an estimate of how much
counterfeit ink is sold in each store and wishes to plan a
route for a detective to investigate a number of the stores.
The estimates can be improved by ordering samples of ink
from individual stores. This incurs inventory, transporta-
tion, and storage costs so the number of orders is limited.
Again, we want to maximize the value of a path with a
fixed number of edges.
Optimal information collection has a long history in

the context of simple problems such as multiarmed ban-
dits (see, e.g., Gittins 1989) and ranking and selection.
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A general overview of ranking and selection can be found
in Bechhofer et al. (1995) and Kim and Nelson (2006),
whereas Law and Kelton (1991) and Goldsman (1983) pro-
vide a simulation-oriented perspective. In these problems,
there is a finite set of alternatives with unknown values,
and the goal is to find the highest value. We can improve
our estimates of the values by sequentially measuring dif-
ferent alternatives. In the problem of learning on a graph,
we also have a finite set of edges that can be measured, but
we are not simply looking for the best edge. We learn by
measuring individual edges, but we use the information we
collect to improve our ability to find a path.
Stochastic shortest-path problems have also been widely

studied. An overview is available in Snyder and Steele
(1995). However, many of these studies assume that the
edge values have known distributions, for example, the
exponential distribution (Kulkarni 1986, Peer and Sharma
2007). The work by Frieze and Grimmett (1985) describes
a probabilistic shortest-path algorithm for more general
classes of nonnegative distributions, and analyzes the length
of the shortest path in the special case of uniformly dis-
tributed edge values. Correlations among the edge values
have also been studied by Fan et al. (2005), again with the
assumption of known distributions. For online graph prob-
lems, in which we learn in the process of traversing the
graph, methods such as Q-learning by Watkins and Dayan
(1992) use stochastic approximation to estimate unknown
values, whereas Bayesian approaches have been proposed
by Dearden et al. (1998) and Duff and Barto (1996).
We build on a class of approximate policies originally

developed for ranking and selection, where each mea-
surement maximizes the value of information that can be
collected in a single time step. This technique was first pro-
posed by Gupta and Miescke (1996) for ranking and selec-
tion with independent Gaussian priors, and subsequently
expanded in the work on value of information procedures
(VIP) by Chick and Inoue (2001a, b). Additional theoreti-
cal properties were established by Frazier et al. (2008) for
the knowledge gradient (KG) policy. A KG-like methodol-
ogy was also applied to other learning problems: by Chick
et al. (2010) for ranking and selection with unknown mea-
surement noise; by Frazier et al. (2009) for ranking and
selection with correlated Gaussian priors; and by Ryzhov
et al. (2011) and Ryzhov and Powell (2009) for the online
multiarmed bandit problem.
In addition to their theoretical properties, KG-type poli-

cies have been shown to perform well experimentally. In the
offline setting, thorough empirical studies were performed
by Inoue et al. (1999) and Branke et al. (2007). In the online
case, the variant of KG studied in Ryzhov et al. (2011) per-
forms competitively even against the known, optimal Gittins
policy for multiarmed bandits, while being much easier to
compute than Gittins indices. These features make KG poli-
cies attractive for information collection problems.
This paper makes the following contributions: (1) we

present a new class of optimal learning problems beyond

the scope of the literature on ranking and selection and
multiarmed bandits. In this problem class, our goal is to
solve an optimization problem on a graph with unknown
edge values. We can improve our estimate of the optimal
solution by making sequential measurements of individual
edges. (2) We show that the knowledge gradient concept
can be applied to this problem class while retaining its the-
oretical and computational advantages. (3) We propose an
alternate learning policy that treats the problem as a rank-
ing and selection problem, using Monte Carlo sampling
to avoid having to enumerate all paths. (4) We conduct
an experimental study comparing these and other learning
policies on a diverse set of graph topologies. The study
indicates that the KG policy is effective for graphs where
there are many paths that could potentially be the best, and
the Monte Carlo policy is effective when we are allowed
to make a large number of measurements.
Section 2 lays out a mathematical model for informa-

tion collection on a graph. In §3, we derive the exact KG
decision rule for an acyclic graph problem and approx-
imate it for general graphs. We also show that the KG
policy is asymptotically optimal as the number of measure-
ments becomes large. In §4, we give a decision rule for
the Monte Carlo KG policy. Finally, we present numeri-
cal results comparing the performance of KG to existing
learning policies.

2. Mathematical Model
Consider a graph described by a finite set S of nodes and
a set E ⊆ S × S of directed edges. Every edge �i� j� ∈ E
has a value �ij . For notational simplicity and without loss
of generality, we assume that every path must start at some
fixed origin node a ∈ S and that every path must contain
exactly T edges. We wish to find the path with the largest
total value

max
p

∑
�i� j�∈E

�
p
ij�ij (1)

where p denotes a path that starts at a and contains T edges,
and �

p
ij is an indicator function that equals 1 if the edge �i� j�

appears in the path p, and zero otherwise. Throughout our
analysis, we assume that the graph is acyclic, so that any
edge can appear at most once in a given path.
The best path can be found using Bellman’s equation for

dynamic programming:

Vt�i� =max
j

�ij + Vt+1�j�� (2)

VT �i� = 0� (3)

These quantities are defined for each i ∈ S and each t =
0� � � � � T . Thus, Vt�i� is the length of the best path that
starts at node i and contains T − t edges. It follows that
V0�a� is the optimal value of the problem (1). The actual
edges that make up the best path can be found by keeping
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track of the nodes j that achieve the maximum in (2) for
each i.
If the values �ij are known, (2) gives us the exact opti-

mal solution to (1). If the values are random with known
distribution, (2) still solves the problem in the sense that
it gives us the path with the highest expected total value.
However, in our work the distributions of the values are
unknown, and our beliefs about them change as we learn
more about them.
Because of this uncertainty, the problem consists of two

phases. In the first phase, we will make sequential measure-
ments of individual edges in order to improve our estimate
of the solution to (2). This is called the learning phase
of the problem. After the measurements have been com-
pleted, we will enter the implementation phase, where we
will choose the path that we think is the best, based on all
the measurements we made in the learning phase. There
is a clear distinction between these two stages. When we
learn, we make measurements of individual edges; when
we implement, we choose a path. In this section, we will
describe the dynamics of the learning phase and the way
in which our beliefs change when we measure an edge.
The issue of how to choose which edge to measure will be
discussed later in §3.

2.1. Learning About Individual Edges

Suppose that the mean values �ij are unknown, but we
can estimate them by measuring individual edges. When
we choose to measure edge �i� j� ∈ E, we observe a ran-
dom value �̂ij , which follows a Gaussian distribution with
mean �ij and variance �2

	 . We assume that the measure-
ment error �2

	 is known, and we sometimes use the notation

	 = �−2

	 to refer to the measurement precision. Because
�ij is itself unknown, we assume that �ij ∼� ��0

ij � ��0
ij �

2�,
where �0

ij and �0
ij represent our prior beliefs about �ij . We

also assume that the values of the edges are mutually inde-
pendent, conditioned on �ij , �i� j� ∈ E.
We learn about the graph by making N sequential mea-

surements, where N is given. One measurement corre-
sponds to exactly one edge. Any edge can be measured
at any time, regardless of graph structure. Let � n be the
sigma-algebra generated by our choices of the first n edges,
as well as the observations we made on those edges. We
say that something happens “at time n” if it happens imme-
diately after we have made exactly n measurements. Then
we can define

�n
ij = Ɛn��ij�

where Ɛn� · � = Ɛ� · �� n�. Similarly, we let ��n
ij �

2 be the
conditional variance of �ij given � n, with 
n

ij = ��n
ij �

−2

being the conditional precision. Thus, at time n we believe

that �ij ∼ � ��n
ij � ��n

ij �
2�. Our beliefs evolve according to

the Bayesian updating equation

�n+1
ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩


n
ij�

n
ij + 
	�̂

n+1
ij


n
ij + 
	

if �i� j� is the �n + 1�st

edge measured

�n
ij otherwise.

(4)

The values of the edges are independent, so we update only
our beliefs about the edge that we have just measured. The
quantity �̂n+1

ij is the random value observed by making that
measurement. The precision of our beliefs is updated using
the equation


n+1
ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩


n
ij + 
	 if �i� j� is the �n + 1�st

edge measured


n
ij otherwise.

(5)

We use the notation �n = ��n
ij � �i� j� ∈ E� and 
n = �
n

ij �
�i� j� ∈ E�. We also let

��̃n
ij �

2 =Var��n+1
ij �� n�

=Var��n+1
ij �� n� −Var��n

ij �� n� (6)

be the reduction in the variance of our beliefs about �i� j�
that we achieve by measuring �i� j� at time n. It can be
shown that

�̃n
ij =

√
��n

ij �
2 − ��n+1

ij �2 =
√

1

n

ij

− 1

n

ij + 
	

�

It is known (for instance, from DeGroot 1970) that the
conditional distribution of �n+1

ij given � n is � ��n
ij � ��̃n

ij �
2�.

In other words, given � n, we can write

�n+1
ij = �n

ij + �̃n
ij · Z (7)

where Z is a standard Gaussian random variable. It follows
that Ɛn��n+1

ij � = �n
ij .

Our beliefs about the values after n measurements are
completely characterized by �n and 
n. We can define a
knowledge state

sn = ��n�
n�

to completely capture all the information we have at time n.
If we choose to measure edge �i� j� ∈ E at time n, we write

sn+1 = KM�sn� �i� j�� �̂n+1
ij �

where the transition function KM is described by (4)
and (5).
To streamline our presentation, the measurement error

�2
	 is taken to be constant for all edges, similar to Frazier

et al. (2008). However, we can allow the measurement error
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to be edge dependent without significant changes in our
analysis. If we suppose that �̂n+1

ij ∼ � ��ij � 
2
ij �, we obtain

the same model, but with �2
	 and 
	 replaced by 
2

ij and

−2

ij in (4), (5), and (6). Except for the modifications in
these equations, all theoretical and computational results
presented in this paper remain unchanged in the case where
the measurement error varies across edges.
The validity of our assumption of Gaussian priors and

measurements is problem dependent. If the measurement is
done through statistical sampling with a large enough sam-
ple size, the Gaussian distribution is a good approximation.
The method of batch means (see e.g., Schmeiser 1982, Kim
and Nelson 2007) can be used to design the observations
to mitigate the nonnormality of the underlying data. Addi-
tionally, Hoff (2009) states, based on a result by Lukacs
(1942), that a Gaussian sampling model can be used if we
believe the sample mean to be independent from the sample
variance (in particular, if the sample variance is known).
A Gaussian prior may work well even when the mea-

surements are non-Gaussian. Gelman et al. (2004) suggest
that a unimodal and “roughly symmetric” posterior can
be approximated by a Gaussian distribution. Under certain
conditions, the posterior is asymptotically normal as the
number of measurements becomes large (see Bernardo and
Smith 1994). In short, a Gaussian sampling model is appro-
priate for many learning problems.

2.2. Estimating the Length of the Best Path with
Dynamic Programming

At time n, our beliefs about the path that solves (2) are
expressed using Bellman’s equation, with the unknown val-
ues � replaced by the most recent beliefs �n:

V n
t �i� sn� =max

j
�n

ij + V n
t+1�j� sn�� (8)

V n
T �i� sn� = 0� (9)

As with (2), we compute V n
t for all i and t, from which

we can construct the path that we believe to be the best at
time n. It is important to understand the distinction between
(2) and (8). The quantity V0�a� represents the true length
of the true best path. The quantity V n

0 �a� sn� represents
our time-n beliefs about which path is the best, and thus
depends on sn. The path that solves (8) is our best time-n
guess of the path that solves (2).
Intuitively, the solution to (8) should be worse than the

expected solution to (2). In other words, there is a penalty
for not having perfect information. The following propo-
sition formalizes this idea. The proof uses an induction
argument and can be found in the appendix. An electronic
companion to this paper is available as part of the online
version at http://or.journal.informs.org.

Proposition 1. For all i ∈ S, for all t = 0� � � � � T , and for
all knowledge states sn,

V n
t �i� sn�� ƐnVt�i� almost surely. (10)

We can also make a time-n estimate of the length of a fixed
path p:

V p�n
t �i� sn� = �n

ij + V
p�n
t+1 �j� sn�� where j = xp�i��

V
p�n
T �i� sn� = 0�

Here, xp�i� denotes the node that follows node i in path p.
The true length of path p is given by

V p
t �i� = �ij + V

p
t+1�j�� where j = xp�i��

V
p
T �i� = 0�

From these equations, it is clear that ƐnV
p
t �i� = V

p�n
t �i� sn�

for fixed p.
Our use of the index t is a technical convention of

dynamic programming. Bellman’s equation constructs the
best path one edge at a time, and the index t merely serves
to indicate how many edges in the path have already been
built. It does not have any bearing on how many edges we
have measured in the learning problem. For convenience,
we will use the notation

V n�sn� = V n
0 �a� sn��

V p�n�sn� = V
p�n
0 �a� sn�

to refer to our time-n estimates, dropping the index t. Sim-
ilarly, we use V and V p to denote V0�a� and V

p
0 �a�.

We can now describe our objective function. In the learn-
ing phase of our problem, we will choose a policy � that
selects an edge for us to measure in every time step. In
the second phase, we will simply solve (8) using our final
estimates �N to find the path that seems to be the best,
based on all the measurements we made in the first phase.
This is the intuitive choice of implementation decision. If
we cannot make any more measurements, the best we can
do is to solve Bellman’s equation using the information we
have accumulated.
The measurement policy � can be viewed as a collec-

tion of decision rules X��0� � � � �X��N−1, where each X��n

is a function mapping the knowledge state sn to an edge
in E. The time-n decision rule uses the most recent knowl-
edge state sn to make a decision. The main challenge in our
problem is to choose a measurement policy � for select-
ing individual edges in the first phase, and our objective
function can be written as

sup
�

Ɛ�V N �sN �� (11)

Our implementation decision is thus fixed in the objective
function. We choose measurements in the learning phase
to maximize the expected value of the path that we will
choose in the implementation phase.
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Remark 1. By taking an expectation of both sides of (10),
we find that for any policy �, Ɛ�V N �sN � � Ɛ�V , where
V = V0�a� is the true length of the path that solves (2).
Because the true edge values � do not depend on the pol-
icy �, it follows that Ɛ�V = ƐV for any �; hence,

Ɛ�V N �sN �� ƐV

for all �. Thus, Proposition 1 gives us a global upper bound
on the objective value achieved by any measurement policy.

Note that we use a time-staged graph model, where we
are always looking for a path with T edges. This is con-
venient for modeling because it enables us to easily write
the solution to the path problem using Bellman’s equation.
However, the KG policy that we derive in §3 does not
require a time-staged graph and can be used for many dif-
ferent path problems. For example, if our graph has both a
source and a destination node, we would simply let V n�sn�
be the time-n estimate of the best path from the source
to destination. We are also not bound to the maximization
problem in (1). For a shortest-path problem, the derivation
in §3 will be identical, except that V n�sn� will be obtained
using a shortest-path algorithm. In fact, our computational
study in §5 solves shortest-path problems on graphs with
sources and sinks.

3. The Knowledge Gradient Policy
The remainder of this paper will discuss the problem of
how to choose the measurement policy � in (11). Finding
the optimal measurement policy is an intractable problem,
but we propose a heuristic policy called the knowledge gra-
dient policy, which yields a computable algorithm.
Suppose that we are at time n, in knowledge state sn. Let

pn be the path that achieves V n�sn�. Thus, pn is the path
that we believe is the best, given our most recent informa-
tion, and V n�sn� is our estimate of its length. The knowl-
edge gradient policy is based on the idea first developed by
Gupta and Miescke (1996) and later studied by Chick and
Inoue (2001a, b) and Frazier et al. (2008) for the ranking
and selection problem. This idea can be stated as “choos-
ing the measurement that would be optimal if it were the
last measurement we were allowed to make.” If we are at
time N − 1, with only one more chance to measure, the
best choice is given by

argmax
�i� j�∈E

ƐN−1
ij V N �sN �=argmax

�i� j�∈E

ƐN−1
ij �V N �sN �−V N−1�sN−1��

where ƐN−1
ij observes all the information known at time

N − 1, as well as the choice to measure �i� j� at time N − 1.
We bring V N−1�sN−1� into the maximum because this quan-
tity is known at time n and does not depend on the choice
of measurement.
If we always assume that we have only one more chance

to measure, at every time step, then the decision rule that
follows from this assumption is

XKG�n�sn� = argmax
�i� j�∈E

Ɛn
ij �V

n+1�sn+1� − V n�sn��� (12)

In words, we measure the edge that maximizes the expected
improvement in our estimate of the length of the best path
that can be obtained from a single measurement. The term
“knowledge gradient” is due to (12) being written as a
difference.

Remark 2. By definition, the KG policy is optimal for
N = 1. In this case, a measurement policy consists of only
one measurement and (11) becomes

max
�i� j�∈E

Ɛ0
ijV

1�s1��

Below, we find the value of a single measurement and
present the knowledge gradient policy.

3.1. The Effect of One Measurement

In order to compute the right-hand side of (12), we consider
the effects of measuring one edge on our beliefs. Fix an
edge �i� j� ∈ E and let Aij = �p� �

p
ij = 1� be the set of all

paths containing �i� j�. Then Ac
ij is the set of all paths not

containing that edge. Now define a path pn
ij as follows. If

pn ∈ Aij , let

pn
ij = argmax

p∈Ac
ij

V p�n�sn��

On the other hand, if pn ∈ Ac
ij , let

pn
ij = argmax

p∈Aij

V p�n�sn��

Thus, if �i� j� is already in the best time-n path, then pn
ij is

the best path that does not contain this edge. If �i� j� is not
part of the path we believe to be the best, then pn

ij is the
best path that does contain that edge. Thus, by definition,
pn

ij �= pn.

Proposition 2. If we measure edge �i� j� at time n, the
path that achieves V n+1�sn+1� will be either pn or pn

ij .

Proof: Suppose that pn ∈ Aij . By definition, pn =
argmaxp V p�n�sn�, so in particular

pn = argmax
p∈Aij

V p�n�sn��

Depending on the outcome of our measurement of �i� j�,
our beliefs about all paths in Aij will change, but they will
all change by the same amount �n+1

ij −�n
ij . This is because

we assume that the graph contains no cycles, so all paths
in Aij contain only one copy of �i� j�. Therefore,

pn = argmax
p∈Aij

V p�n+1�sn+1�

for every outcome. Thus, pn is the only path in Aij that can
be the best time-�n + 1� path. Our beliefs about the paths
in Ac

ij will remain the same, because none of those paths
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contain �i� j�, and our beliefs about the other edges do not
change as a result of measuring �i� j�. Therefore,

argmax
p∈Ac

ij

V p�n+1�sn+1� = argmax
p∈Ac

ij

V p�n�sn� = pn
ij

for every outcome. Thus, pn
ij is the only path in Ac

ij that can
be the best time-�n+1� path. It follows that pn and pn

ij are
the only two paths that can be the best at time n + 1.
If pn ∈ Ac

ij , the argument is the same. By definition, pn

is the best path, so

pn = argmax
p∈Ac

ij

V p�n�sn��

Our beliefs about the paths in Ac
ij do not change after mea-

suring �i� j�, so pn will still be the best path in Ac
ij at time

n + 1. Our beliefs about all paths in Aij will change by
the same amount after the measurement, so pn

ij will still be
the best path in Aij at time n + 1. Therefore, pn and pn

ij

are again the only two paths that can be the best at time
n + 1. Q.E.D.

Because pn and pn
ij figure prominently in the KG policy,

we must remark on their computation. We can obtain pn

via (8). If pn ∈ Aij , then pn
ij can be found by solving a

modified version of (8) with �n
ij set to −�. This ensures

that we obtain a path in Ac
ij . If pn � Ac

ij , we can again solve
a modified version of (8) with �n

ij chosen to be some large
number, for instance, the sum of the other �n values. This
will construct a path that includes �i� j�, with the other
edges chosen optimally.

3.2. Computation of the KG Policy

Define a function f �z� = z��z�+��z�, where � and � are
the standard Gaussian pdf and cdf, respectively. Also, for
notational convenience, we define V n

ij �s
n� = V pn

ij � n�sn�. This
quantity is our time-n estimate of the length of the path pn

ij

defined in §3.1. With these definitions, we can present the
main result of this section, namely, the exact solution of
the expectation in (12).

Theorem 1. The KG decision rule in (12) can be written as

XKG�n�sn� = argmax
�i� j�∈E

�KG�n
ij (13)

where

�KG�n
ij = �̃n

ij · f
(

− V n�sn� − V n
ij �s

n�

�̃n
ij

)
� (14)

Proof: As in the proof of Proposition 2, we consider two
cases, one where �

pn

ij = 1 and one where �
pn

ij = 0. The two
cases differ slightly, but in the end we derive one unified
formula for �KG�n

ij .

Case 1: pn ∈ Ac
ij . Suppose that the edge �i� j� is not cur-

rently part of the best path. Nonetheless, we can potentially
gain by measuring it. From Proposition 2 we know that
only pn or pn

ij can be the best path at time n + 1. Observe
that pn

ij will become the best path (beating pn) if

�n+1
ij > �n

ij + �V n�sn� − V n
ij �s

n���

that is, our beliefs about �i� j� increase by an amount that is
large enough to make up the time-n difference between
pn and pn

ij . Note that V n�sn� − V n
ij �s

n� � 0 by assumption,
because V n�sn� is the time-n length of the best time-n path.
For all other outcomes of the measurement (that is, if our
beliefs about �i� j� do not increase enough), pn will con-
tinue to be the best path at time n + 1.
The one-period increase in our beliefs about the length of

the best path, denoted by V n+1�sn+1�−V n�sn�, depends on
the outcome of the measurement in the following fashion:

V n+1�sn+1� − V n�sn�

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�n+1
ij − �n

ij − �V n�sn� − V n
ij �s

n��

if �n+1
ij − �n

ij � V n�sn� − V n
ij �s

n�

0 otherwise�

(15)

The shape of this function can be seen in Figure 1(a). Then,
the knowledge gradient obtained by measuring �i� j� is

�KG�n
ij = Ɛn

ij �V
n+1�sn+1� − V n�sn��

= Ɛn
ij

[
��n+1

ij − �n
ij − �V n�sn� − V n

ij �s
n���

·1��n+1
ij −�n

ij�V n�sn�−V n
ij �sn��

]
�

Equation (7) tells us that, given � n, �n+1
ij ∼� ��n

ij � ��̃n
ij �

2�.
Thus,

�KG�n
ij = �̃n

ij · Ɛ(Z · 1�Z��V n�sn�−V n
ij �sn��/��̃n

ij ��

)
−�V n�sn� − V n

ij �s
n�� · P

(
Z �

V n�sn� − V n
ij �s

n�

�̃n
ij

)

where Z ∼� �0�1�. It follows that

�KG�n
ij = �̃n

ij · �
(

− V n�sn� − V n
ij �s

n�

�̃n
ij

)

−�V n�sn� − V n
ij �s

n�� · �
(

− V n�sn� − V n
ij �s

n�

�̃n
ij

)

= �̃n
ij · f

(
− V n�sn� − V n

ij �s
n�

�̃n
ij

)
� (16)

Case 2: pn ∈ Aij . If we measure an edge that is part of
the best path, our estimate of the best path can become
better or worse, depending on the outcome of the measure-
ment. Then pn

ij , the best path not containing that edge, will
become the best path at time n + 1 if
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Figure 1. Structure of the one-period increase in our
beliefs about the best path.

Vn+1(sn+1)–Vn(sn)

Vn(sn)–Vn
ij(sn)

�n+1 – �n
ijij

Vn+1(sn+1)–Vn(sn)

–(Vn(sn)–Vn
ij(sn))

–(Vn(sn)–Vn
ij(sn))

�n+1 – �n
ijij

(a) Case 1: pn ∈ Ac
ij

(b) Case 2: pn ∈ Aij

�n+1
ij < �n

ij − �V n�sn� − V n
ij �s

n���

that is, if our beliefs about �i� j� drop far enough. In this
case, the one-period improvement is given by

V n+1�sn+1� − V n�sn�

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−�V n�sn� − V n
ij �s

n��

if �n+1
ij − �n

ij < −�V n�sn� − V n
ij �s

n��

�n+1
ij − �n

ij otherwise.

(17)

The shape of this function is shown in Figure 1(b). The
knowledge gradient is

�KG�n
ij = Ɛn

ij �V
n+1�sn+1� − V n�sn��

= −�V n�sn� − V n
ij �s

n��

· P��n+1
ij − �n

ij < −�V n�sn� − V n
ij �s

n���

+Ɛn
ij

[
��n+1

ij − �n
ij� · 1��n+1

ij −�n
ij�−�V n�sn�−V n

ij �sn���

]
�

As before, �n+1
ij ∼� ��n

ij � ��̃n
ij �

2� given � n. Therefore,

�KG�n
ij =−�V n�sn�−V n

ij �s
n��·P

(
Z<− �V n�sn�−V n

ij �s
n��

�̃n
ij

)

+�̃n
ij ·Ɛn

ij

(
Z ·1�Z�−��V n�sn�−V n

ij �sn���/��̃n
ij ��

)
�

which becomes

�KG�n
ij = −�V n�sn� − V n

ij �s
n�� · �

(
− V n�sn� − V n

ij �s
n�

�̃n
ij

)

+ �̃n
ij · �

(
− V n�sn� − V n

ij �s
n�

�̃n
ij

)
�

This is the same expression as in (16). Q.E.D.
The right-hand side of (14) provides us with a simple,

easily computable formula for the knowledge gradient. The
formula resembles an analogous formula for ranking and
selection examined by Frazier et al. (2008). However, (14)
is designed specifically for the graph problem; to run the
KG policy at time n, we are required to solve one shortest-
path problem for each edge, to find V n

ij �s
n�.

Equations (13) and (14) give an exact computation of
(12) when the graph contains no cycles. If we allow cycles
in the graph, then any path that is the best time-n path con-
taining k copies of �i� j�, for any k = 0�1� � � � , can become
the best time-�n+ 1� path after measuring �i� j�. It is diffi-
cult to enumerate all such paths; if the graph has cycles, we
suggest (14) as an approximation to this difficult computa-
tion. For shortest-path problems, however, no path with a
positive-cost cycle can ever be the shortest, so (13) and (14)
closely approximate (12) as long as negative-cost cycles
occur with negligible probability.

3.3. Asymptotic Optimality of the KG Policy

Define the risk function R�p� = V − V p to represent the
loss incurred by choosing p instead of the true best path
at time N . In this section, we show that the KG policy is
asymptotically optimal in the sense of Frazier and Powell
(2011), that is,

lim
N→�

Ɛ

(
min

p
ƐN R�p�

)
= Ɛ

(
min

p
Ɛ�R�p� ���

)
� (18)

In words, the minimum-risk decision after N measurements
will attain the minimum risk possible if all values are per-
fectly known, in the limit as N → �. The crucial point is
that the KG policy is the only learning policy that is opti-
mal for both N = 1 (in the sense of Remark 2) and for
N → � (in the sense of (18)). This combination of myopic
and asymptotic optimality suggests that KG could also per-
form well for finite measurement budgets.
All expectations in this discussion are under the KG pol-

icy; we drop the policy name from ƐKG for notational con-
venience. Observe that

lim
N→�

Ɛ

(
min

p
ƐN R�p�

)
= lim

N→�
Ɛ

(
min

p
ƐN �V − V p�

)

= lim
N→�

Ɛ

(
ƐN V +min

p
�−ƐN V p�

)

= lim
N→�

ƐV −max
p

V p�N �sN �

= ƐV − lim
N→�

ƐV N �sN ��
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Using similar calculations, it can be shown that Ɛ�minp

Ɛ�R�p� ���� = 0, which means that we can rewrite (18) as

lim
N→�

ƐV N �sN � = ƐV � (19)

From Remark 1 we know that ƐV N �sN �� ƐV for any N , so
(19) means that an asymptotically optimal policy, with our
usual implementation decision, achieves the highest possi-
ble objective value. The definition given in (18) is in line
with the intuitive meaning of asymptotic optimality.

Theorem 2. The KG policy of Theorem 1 is asymptotically
optimal in the sense of (19).

The proof of Theorem 2 is technical in nature and can
be found in the appendix. The work by Frazier and Powell
(2011) provides sufficient conditions for the asymptotic
optimality of a KG-like learning policy in a general opti-
mal learning setting. Our contribution is to verify that these
conditions are satisfied by the KG policy for the graph set-
ting. In the appendix, we list the conditions in the context
of the graph problem, then show that they are satisfied.

4. A Monte Carlo Learning Policy
In this section, we offer a different strategy for choosing
edges. This approach views the paths of the graph as alter-
natives in a ranking and selection problem. We explain how
to model this problem and solve it using the correlated KG
algorithm by Frazier et al. (2009), assuming that we can
enumerate all the paths. We then discuss how to use Monte
Carlo simulation to avoid having to enumerate all the paths,
instead generating a small subset of the set of all paths.

4.1. Ranking and Selection on Paths

Recall from §2.2 that V p denotes the true value of a path p.
Suppose for now that we can enumerate all the paths
of the graph as p1� � � � � pP . Let V paths = �V p1� � � � � V pP �
denote the true lengths of these paths. Let V paths� n�sn� =
�V p1� n�sn�� � � � � V pP �n�sn�� represent the paths’ time-n
lengths. Also, let Ep be the set of edges contained in path
p ∈ �p1� � � � � pP �. Because a path is characterized by its
index, we will use p to refer to a path, as well as the path’s
index in the set �1� � � � � P�.
From before, we know that ƐnV p = V p�n�sn� for any

path p. Because V p = ∑
�i� j�∈Ep

�ij , the conditional covari-
ance of V p and V p′

, given � n, is expressed by

�
paths� n
p�p′ �sn� = ∑

�i� j�∈Ep∩Ep′
��n

ij �
2� (20)

As before, the individual edges of the graph are indepen-
dent. However, two paths are not independent if they have
at least one edge in common, and the covariance of two
path lengths is the sum of the variances of the edges that
the two paths have in common. Then, given � n, we have

V paths ∼� �V paths� n�sn���paths� n�sn�� (21)

where �paths� n�sn� is defined by (20). Thus, we have a mul-
tivariate Gaussian prior distribution on the vector V paths of
true path lengths.
Now suppose that instead of measuring one edge in each

time step, we can measure a path containing T edges and
use (4) and (5) to update our beliefs about every edge in
that path. Because our measurements are independent, the
variance of such a measurement is �2

	 T . Our goal is to
find argmaxp V p, the path with the largest true value. This
can be viewed as a traditional ranking and selection prob-
lem with correlated Gaussian priors. The alternatives of the
problem are paths, our beliefs are given by (21), and we
choose a path to measure in every time step.
To solve this problem, we can apply the correlated

knowledge gradient algorithm from Frazier et al. (2009).
The knowledge gradient for path p in this problem is

�KGC�n
p = Ɛn

p�V n+1�sn+1� − V n�sn��� (22)

For path p, we define a vector

�̃KGC�n�p� = �paths� nep√
�2

	 T + �
paths� n
pp

(23)

to represent the reduction in the variance of our beliefs
about all paths achieved by measuring path p. Here ep is a
vector with 1 at index p and zeros everywhere else. Then,
(22) can be rewritten as

�KGC�n
p =

P−1∑
y=1

��̃KGC�n
y+1 �p� − �̃KGC�n

y �p��f �−� cy ��� (24)

where the paths have been sorted in order of increasing
�̃KGC�n

y �p�, f is as in §3, and the numbers cy are such that
y = argmaxp′�V

paths� n
p′ �sn�+�̃KGC�n

p′ �p� ·z� for z ∈ �cy−1� cy�,
with ties broken by the largest-index rule. Then, the corre-
lated KG policy for choosing a path is given by

XKGC�n�sn� = argmax
p

�KGC�n
p � (25)

4.2. Using Monte Carlo Sampling to Generate a
Choice Set

There are two major problems with using the correlated KG
policy to find a path. First, we want to measure individual
edges, not paths. If we use (25) to find a path, we also need
a rule for choosing an edge from that path. Second, and
more importantly, it is difficult to enumerate paths, and thus
we cannot use traditional ranking and selection methods on
them. As an alternative to the KG policy described in §3,
we propose a Monte Carlo-based policy that generates a
small set of paths and runs (25) on that set.
We run our Monte Carlo-based version of KG over the

paths by first generating K sample realizations of the ran-
dom variable �̄n

ij ∼� ��n
ij � ��n

ij �
2� for every edge �i� j�. Let
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�̄n��k� = ��̄n
ij ��k� � �i� j� ∈ E� be the kth sample realiza-

tion. We can find a path corresponding to the kth realiza-
tion by solving Bellman’s equation using �̄n��k� as the
edge values. Because some sample realizations might yield
the same best path, let K0 be the number of distinct paths
obtained from this procedure, and let l1� � � � � lK0

represent
those distinct paths. As before, we will use l to refer to a
path as well as the path’s index in �1� � � � �K0�.

Define the vector V MC = �V l1� � � � � V lK0 � to represent
the true lengths of the paths (using �ij ), and similarly
let V MC�n�sn� = �V l1� n�sn�� � � � � V lK0

� n�sn�� represent the
paths’ time-n lengths. Then, given � n, we have V MC ∼
� �V MC�n�sn���MC�n�sn�� where

�MC�n
l� l′ �sn� = ∑

�i� j�∈El∩El′
��n

ij �
2�

To put it in words, we first find a set of K0 different paths
by solving K Monte Carlo shortest-path problems. Given
the information we know at time n, the mean length of a
path is the sum of the time-n lengths of the links in that
path, and the covariance of two path lengths is the sum of
the variances of the edges that the two paths have in com-
mon. Then, given � n, the vector of path lengths has the
multivariate Gaussian prior distribution given above. We
can now apply the correlated KG algorithm for ranking and
selection to the K0 paths generated, and repeat the compu-
tations (23), (24), and (25) using V MC�n and �MC�n instead
of V P�n and �P�n. This procedure returns a path lMC�n.

It remains to select an edge from this path. We propose
the highest-variance rule

XMCKG�n�sn� = argmax
�i� j�∈ElMC�n

�n
ij � (26)

In the special case where K0 = 1, we can simply follow (26)
for the sole path generated, without additional computation.
In §5, we use the MCKG policy as a competitive strategy

to evaluate the performance of the KG policy. However, we
note that MCKG is also a new algorithm for this problem
class. It can be used in a situation where (14) is too expen-
sive to compute, but we can still solve K path problems for
some K < �E�. The MCKG policy is equally suitable for
cyclic and acyclic graphs.

5. Computational Experiments
We examined the ways in which the performance of KG
on a graph, relative to several other learning policies, was
affected by the physical structure of the graph, the size
of the graph, the measurement budget N , and the amount
of information given by the prior. Our methods of graph
generation are discussed in §5.1. As stated at the end of §3,
it does not matter whether we are looking for the shortest
or longest path, because the KG formula in (14) will be
the same in both cases. In our experiments, we minimized
path length on graphs with a clearly defined source node

and destination node; for all of our learning policies we
used a freeware implementation of Dijkstra’s algorithm to
solve the shortest-path problems. In this setting, if � is
a measurement policy, and p� is the path that seems to
be the best at time N after having followed �, then the
opportunity cost of � is defined to be

C� = V p� − V � (27)

the difference in the true length of the path p� and the
true length of the true best path. This is the error we make
by choosing the path that seems to be the best after run-
ning policy �. The quantity V is found using (2), with the
maximum replaced by a minimum. For policies �1 and �2,

C�2 − C�1 = V p�2 − V p�1 (28)

is the amount by which policy �1 outperforms policy �2.
Positive values of (28) indicate that �1 found a shorter
(better) path, whereas negative values of (28) mean the
opposite. For every experiment in our study, we ran each
measurement policy 104 times, starting from the same ini-
tial data, thus obtaining 104 samples of (27) for each policy.
The 104 sample paths were divided into groups of 500 in
order to obtain approximately normal samples of opportu-
nity cost and the standard errors of those averages. The
standard error of the difference in (28) is the square root
of the sum of the squared standard errors of C�1 , C�2 .

Crucially, this performance metric requires us to know
the true values � for every graph we consider. In order to
test a learning policy, we first assume a truth, then evaluate
the ability of the policy to find that truth. For this reason,
the starting data for our experiments were randomly gener-
ated, including the physical graph structure itself. Because
we minimized path length, we generated � and �0 large
enough to avoid negative edge values in our measurements.
For each graph, we generated two sets of numbers. In

the heterogeneous-prior set, the prior means �0 were gen-
erated from a uniform distribution on �450�550�. The prior
variances were generated from a uniform distribution on
�95�105�; the purpose of using such a narrow interval was
to ensure that all of them would be approximately equal,
but any one would be equally likely to be the largest. Then,
for each edge �i� j�, the true value �ij was generated from
a Gaussian distribution with mean �0

ij and variance ��0
ij �

2.
This represents a situation in which our prior beliefs are
accurate on average and give us a reasonably good idea
about the true values. The measurement noise �2

	 was cho-
sen to be 1002.
In the second set of initial parameters, referred to as the

equal-prior set, we generated the prior means �0 from a
uniform distribution on �495�505�, the purpose of the nar-
row interval again being to break ties among the priors.
The true means � were generated from a uniform distri-
bution on �300�700�. The prior variances and the mea-
surement noise were obtained the same way as in the

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Ryzhov and Powell: Information Collection on a Graph
Operations Research 59(1), pp. 188–201, © 2011 INFORMS 197

heterogeneous-prior experiments. The true edge lengths fall
into roughly the same range as in the heterogeneous-prior
experiments, but the priors now give us much less informa-
tion about them.
Five policies were tested overall; we briefly describe

their implementation.
Knowledge gradient on a graph �KG�. This policy is

defined by the decision rule (13), the exact KG policy for
acyclic graphs. The quantity V n�sn� is found by solving
a shortest-path problem using �n as the edge values. The
quantity V n

ij �s
n� is found in a similar fashion, with the value

of �i� j� modified as described in §3.
Pure exploitation �Exp�. The pure exploitation policy

consists of finding the path pn that solves (8) with
max replaced by min, then measuring the edge given by
XExp�n�sn� = argmin�i� j�∈pn �n

ij .
Variance exploitation �VExp�. This policy is a slight

modification of the pure exploitation policy. It measures the
edge given by XVExp�n�sn� = argmax�i� j�∈pn �n

ij . Instead of
simply choosing the edge that looks the best on the path
that looks the best, it chooses the edge that we are least
certain about on that same path.
Monte Carlo-correlated KG �MCKG�. The Monte Carlo

policy is described in §4. The decision rule for this policy is
given by (26). The policy has one parameter K, the number
of Monte Carlo samples generated. In our experiments, we
used K = 30. We found that smaller values of K resulted
in very few paths. On the other hand, larger values did
not appreciably increase the number K0 of distinct paths
generated (which was typically in the single digits), while
requiring substantially more computational time.
Pure exploration �Explore�. In every iteration, the pure

exploration policy chooses an edge uniformly at random
and measures it.

5.1. Effect of Graph Structure on KG Performance

We considered three general types of graph structure:
Layered graphs. (Layer�L�B� c�). The layered graph is

closest in form to the time-staged model we developed
in §2. It consists of a source node, a destination node, and L
layers in between. Each layer contains B nodes, and every
node in every layer except for the last one is connected to

Figure 2. Examples of layered, Erdős-Renyi, and scale-free graphs. The source and destination nodes are marked by s
and t.

(a) Layer(3,4,2)

s t
s t

(b) ER(12,0.3)

ts

(c) SF(3,9,2)

c randomly chosen nodes in the next layer. The source is
connected to every node in the first layer, and every node
in the last layer is connected to the destination. The total
number of nodes in the graph is L · B + 2, and the total
number of edges is �L − 1� · B · c + 2 · B. The edges are
directed, so every layered graph is acyclic.
Erdős-Renyi graphs. (ER�D�p�). The Erdős-Renyi ran-

dom graph model was introduced by Gilbert (1959) and
Erdős and Renyi (1959). A graph has D nodes, and any two
nodes have a fixed probability p of being connected by an
edge. Thus, the total number of edges in the graph varies,
but on average is equal to

(
D

2

) · p. In our experiments, the
source is the node with index 1 and the sink is the node
with index D.
Scale-free graphs. (SF �S� I� c�). We use the scale-free

graph model created by Barabási and Albert (1999). We
start with S nodes and run I iterations. In every iteration,
we add one new node and connect it to c randomly chosen,
previously existing nodes. The total number of nodes is
equal to S+I , and the total number of edges is equal to I ·c.
In our experiments, the source is the first node added and
the sink is the last node added.
Figure 2 gives examples of all three types. In the lay-

ered graph, any path from source to destination contains the
same number of edges. In the other graphs, several nodes
have very high degrees, so there tends to be at least one
very short path from one node to another. Layered graphs
are acyclic, so (13) and (14) give the exact computation
of (12). The other two types of graphs can have cycles, so
we use (13) as a close approximation of (12). Our edge
values are high enough to make the probability of negative-
cost cycles negligible.
We generated 10 graphs of each type, each with approx-

imately 30 nodes and 50 edges. The exact types were
Layer�4�5�3�, ER�30�0�1�, and SF �5�25�2�. The mini-
mum, average, and maximum values of the difference (28)
across 10 graphs of each type are given in Tables 1, 2, and 3
for both the heterogeneous-prior and equal-prior experi-
ments. The measurement budget was taken to be N = 30,
or approximately 60% of the number of edges.
The KG policy gives the best performance on the layered

graphs, where it outperforms all other policies on average.
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Table 1. Mean differences in opportunity cost across 10 Layer�4�5�3� graphs.

Heterogeneous-prior Equal-prior

Min Average Max Min Average Max

KG-Exp −2�4410 151�5178 337�4421 162�2031 367�6961 673�0983
KG-VExp −3�7512 62�6977 104�9868 −15�9721 72�6030 130�8938
KG-MCKG 29�6875 60�8563 89�8636 −30�9532 54�7674 195�6884
KG-Explore 13�1494 93�1405 145�6467 33�5755 95�8332 167�7865

Table 2. Mean differences in opportunity cost across 10 ER�30�0�1� graphs.

Heterogeneous-prior Equal-prior

Min Average Max Min Average Max

KG-Exp −29�5931 14�7976 161�8455 −3�4380 29�8378 249�9321
KG-VExp −82�0065 −8�5772 2�9997 −43�8978 8�4519 79�0177
KG-MCKG −161�1705 −17�5574 8�9841 −51�1068 −3�7332 10�5969
KG-Explore −49�7891 4�9316 53�6483 0�0 24�0246 94�4013

In the worst case, it can be outperformed by pure exploita-
tion and variance exploitation. However, even then the dif-
ference is negligible, because the value of a typical path in
one of these layered graphs is around 2�500. Furthermore,
in the best case the KG policy outperforms the competition
by a much larger margin.
For the other two types of graphs, KG performs com-

petitively on average, but is outperformed by every policy
in the worst case, although the margin is very small for
scale-free graphs. The Monte Carlo policy performs espe-
cially well on both Erdős-Renyi and scale-free graphs, with
a slight edge over KG on average. In general, the competi-
tion is much tighter than for the layered graphs.
In Erdős-Renyi and scale-free graphs, there tends to be

at least one path from source to destination that contains
very few edges. When the values on the edges are similar
in magnitude, this means that a path with fewer edges is
more likely to be the best. In such graphs, our consideration
is narrowed down to a small number of very short paths;
even in the equal-prior case, the graph topology provides
a great deal of information. In fact, all five of our policies
were able to find the true best path in five out of 10 of the
Erdős-Renyi graphs. For this reason, Table 2 contains one
0�0 value, meaning that both policies under consideration
achieved a zero opportunity cost.
In a layered graph, however, every path contains the

same number of edges. In this case, small differences in

Table 3. Mean differences in opportunity cost across 10 SF �5�25�2� graphs.

Heterogeneous-prior Equal-prior

Min Average Max Min Average Max

KG-Exp −4�9423 9�6666 53�1207 −36�3735 3�4179 80�8175
KG-VExp −5�0684 6�6864 66�7394 −21�9450 6�2264 85�9265
KG-MCKG −3�2274 0�2408 3�2134 −30�5455 −2�0340 12�9562
KG-Explore −5�2182 9�7683 82�3290 0�0 22�2583 88�9437

our prior beliefs matter much more, and there are many
more paths that could potentially be the best. In this setting,
exploitation-based methods quickly get stuck on an incor-
rect path, whereas exploration is unable to discover enough
useful information. The KG policy, on the other hand, is
more effective at finding a good path. Thus, the KG policy
is a particularly good choice for a time-staged graph model.
We also see that KG tends to perform better in the equal-

prior setting for layered and Erdős-Renyi graphs. On scale-
free graphs, the performance of KG suffers in the worst
case but benefits in the best case, with a slight drop in
average-case performance. For the most part, we see that
KG can learn effectively when the prior gives relatively lit-
tle information, especially in the layered graph setting. The
most effective policy after KG is MCKG, which has the
most sophisticated learning mechanism among the compe-
tition. This is also the only policy among the competition
that adapts well to the equal-prior setting, maintaining its
performance relative to KG on average.
Table 4 shows the average standard errors of our esti-

mates of (28) across each set of graphs. The numbers are
much smaller than most of the mean differences reported
in Tables 1–3. As expected, the standard error is larger for
layered graphs, when we have more paths from which to
choose.
Finally, Table 5 reports the average number of distinct

edges measured by each policy for each set of graphs.
Once again, we find that all policies except pure exploration
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Table 4. Average standard errors of the differences in opportunity cost.

Heterogeneous-prior Equal-prior

Layer ER SF Layer ER SF

KG-Exp 1�7887 0�3589 0�2364 2�0525 0�5892 0�3060
KG-VExp 1�9584 0�3447 0�2349 2�4267 0�5329 0�3710
KG-MCKG 1�7512 0�2479 0�1414 2�1261 0�2482 0�2857
KG-Explore 2�0358 0�3728 0�2652 2�3589 0�6671 0�4579

Table 5. Average number of distinct edges measured by each policy.

Heterogeneous-prior Equal-prior

Layer ER SF Layer ER SF

KG 20�5801 10�7087 7�6630 22�9280 8�9953 9�1416
Exp 3�4162 1�5208 2�2032 3�1745 2�1769 1�9843
VExp 10�7140 3�9947 3�9494 12�5684 3�6904 3�9536
MCKG 29�0706 5�8198 5�6184 29�5703 5�4339 5�4444
Explore 23�2830 21�5285 22�7159 23�2794 21�5349 22�7244

examine fewer distinct edges on Erdős-Renyi and scale-
free graphs than on layered graphs. For instance, when the
MCKG policy takes Monte Carlo samples of the best path
on a layered graph, the choice of the best path can be
decided by minor variations in the edge samples, and we
will sample more distinct paths. However, on a graph where
there are one or two paths with very few edges, those few
paths will almost always come out on top in the Monte
Carlo sampling, and MCKG will do much less exploration
than before.

5.2. Effect of Graph Size on KG Performance

We examined the effect of graph size on the performance
of the KG policy on the layered graphs discussed in §5.1,
the graph type that most resembles the time-staged model
introduced in §2. We generated a set of 10 Layer�6�6�3�
graphs. Thus, each graph in the set had 38 nodes and 102
edges, approximately twice as many as the graphs in §5.1.
We also increased the measurement budget to N = 60,
again, approximately 60% of the number of edges.
The performance of the KG policy on this set is summa-

rized in Table 6. Every path in these graphs contains two
more edges than for the Layer�4�5�3� graphs, so the typ-
ical path length is greater by about 1,000, a 40% increase.
However, the average values in Table 6 are about twice as

Table 6. Mean differences in opportunity cost across 10 Layer�6�6�3� graphs.

Heterogeneous-prior Equal-prior

Min Average Max Min Average Max

KG-Exp 212�1008 364�1344 513�2963 375�6234 554�0195 901�4031
KG-VExp −46�8154 101�1566 228�8304 31�5401 112�3906 167�6988
KG-MCKG 48�1381 113�5038 169�0582 42�5510 123�5008 298�5638
KG-Explore 119�0861 175�2994 296�3735 106�6856 185�7381 304�1708

large as the analogous values in Table 1, indicating that the
competing policies fall behind the KG policy as the graph
size increases.
These results are consistent with our observations

in §5.1: KG is more effective in situations where there are
more paths from which to choose. Essentially, KG is better
equipped to manage large numbers of alternatives than the
other learning policies.

5.3. Effect of Measurement Budget on
KG Performance

We tested our learning policies on one randomly cho-
sen Layer�4�5�3� problem from §5.1 using measurement
budgets of N = 5�10� � � � �100. Figure 3(a) shows the way
in which the opportunity cost C� changes with the mea-
surement budget for each of our learning policies. We
see that the KG policy consistently achieves the lowest
opportunity cost. The only close competition comes from
MCKG, which lags behind the KG policy for N around 50,
but catches up for large N .
Figure 3(b) tracks the number of distinct edges (out of 50

total) measured by each policy for each measurement bud-
get. As in Table 5, KG is exactly in the middle of the five
policies. The variants of pure exploitation do not explore
enough. Pure exploration and MCKG explore more edges
than the KG policy, but do so less effectively. For N > 50,
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Figure 3. Opportunity cost and number of edges mea-
sured as functions of N .
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we see that MCKG explores more slowly, until it almost
exactly matches the KG policy for N = 100.
We can conclude that KG is effective for small mea-

surement budgets. As long as we are allowed fewer mea-
surements than there are edges (the given graph has about
50 edges), KG uses those measurements more efficiently
than the competition. When the measurement budget is rel-
atively large, the Monte Carlo policy becomes a viable
alternative. Together with our study of graph size and struc-
ture, these results indicate that KG performs better relative
to other policies when there are many interesting paths to
consider but relatively few chances to measure them.

6. Conclusion
We have proposed a strategy for a new type of learning
problem: the problem of finding the best path in a graph
with unknown edge weights, given finitely many chances
to measure individual edges. When the edge weights have
normally distributed priors and normal sampling error with
known variance, the KG policy results in a simple decision

rule that requires us to compute a closed-form expression
for every edge in the graph. Like analogous policies for
offline ranking and selection, the KG policy is myopically
and asymptotically optimal. Our decision rule computes the
knowledge gradient exactly for acyclic graph problems and
approximates it for graphs with cycles.
In our experiments, we considered how the performance

of the KG policy is affected by several factors: the general
type of graph structure, the size of the graph, the measure-
ment budget, and the amount of information conveyed by
the prior. We found that the KG policy on average outper-
forms several learning heuristics, including a Monte Carlo
adaptation of a KG-type policy for ranking and selection.
The KG policy is particularly effective on problems where
there are many possible paths that could potentially be the
best, but where the measurement budget is relatively small.
This is precisely the sort of problem where it is important
to learn efficiently. We conclude that the KG policy has
strong potential for application in graph problems, where
the physical structure makes it difficult to use traditional
ranking and selection methods.
The KG logic of choosing a measurement to maximize

the expected improvement in our beliefs about the optimal
value of some objective function is very general. It is pos-
sible to envision problems that are more general than the
graph problem, just as the graph problem itself is more
general than the ranking and selection problem. The gen-
erality of the KG concept suggests that KG-like policies
can also be derived in learning problems with still more
complex objective functions. For example, it is possible to
envision an objective where the sampling cost has an eco-
nomic representation other than just a finite measurement
budget. The ranking and selection literature includes work
on economic analysis (see, e.g., Chick and Gans 2009), and
the work on KG methods has also begun to incorporate
some of these ideas (see Chick and Frazier 2009) for the
basic ranking and selection setting. The primary challenge
in this case is the computation of the KG factor, which is
problem specific. Still, we believe that the KG methodol-
ogy can potentially open a new direction in the modeling
and analysis of complex optimal learning problems.

7. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal
.informs.org/.
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